TRANSPORTATION TECHNICAL REPORT

for

Huntington Middle School Interim Use of Catlin Elementary School Site

PREPARED FOR:

Kelso School District

PREPARED BY:

February 11, 2021

TABLE OF CONTENTS

1. INTRODUCTION	
2. BACKGROUND CONDITIONS 2.1. Roadway Network 2.2. Traffic Volumes 2.3. Traffic Operations 2.4. Parking Supply 2.5. Traffic Safety 2.6. Transit Facilities and Service 2.7. Non-Motorized Transportation Facilities 3. PROJECT IMPACTS 3.1. Roadway Network 3.2. Traffic Volumes	5 6 7 11 12 12 13 13
3.3. Traffic Operations 3.4. Parking Supply and Demand 3.5. Traffic Safety 3.6. Transit 3.7. Non-Motorized Transportation Facilities	19 19 20
4. FINDINGS AND RECOMMENDATIONS	
LIST OF FIGURES	
Figure 1. Site Location and Vicinity	4 8 9 15 16
LIST OF TABLES	
Table 1. Traffic Count Data	10 11 13

INTRODUCTION 1.

This report presents the transportation impact analyses for the Kelso School District's (District) proposal to temporarily house Huntington Middle School at the Catlin Elementary School site. The scope of analysis and approach were based on extensive past experience performing transportation impact analyses for school projects throughout Washington. This report documents the existing conditions in the site vicinity, presents estimates of project-related traffic, and evaluates the anticipated impacts to the surrounding transportation system including parking, safety, and non-motorized facilities. This analysis was prepared to support the Conditional Use Permit (CUP) required by the City of Kelso (City) and the SEPA checklist prepared by the District. The study area and key analysis assumptions were defined in coordination with City staff.¹ At the time of this analysis, Kelso Schools were operating with a mix of hybrid- and remote-learning due to the COVID-19 pandemic. The traffic analyses presented herein are based on data collected before the pandemic began to reflect normalized school conditions.

The District retained Heffron Transportation, Inc. to prepare the required traffic and transportation analyses for the project. Heffron Transportation, Inc. is a professional traffic and transportation engineering consulting firm located and registered in the State of Washington. The analysis and report documentation were prepared by:

> Tod S. McBryan, P.E., Principal & Vice President Heffron Transportation, Inc. Phone: (206) 527-8410 6544 NE 61st Street Email: tod@hefftrans.com Seattle, WA 98115

Mr. McBryan is a Principal Transportation Engineer and Professional Civil Engineer licensed in the State of Washington with 29 years of experience preparing traffic impact analyses. He is also a member of the Institute of Transportation Engineers (ITE) and the Transportation Research Board (TRB). Mr. McBryan has led transportation analyses for over 250 public schools in Washington State.

Project Description

Huntington Middle School will undergo modernization during the 2021-2022 school year. After Catlin Elementary students are relocated to the new Lexington Elementary School that is currently under construction, Huntington Middle School, with its enrollment of about 580 students will be temporarily relocated to the Catlin Elementary site (located at 404 Long Avenue in Kelso) for one school year. The following sections describe the existing school site and the proposed project.

1.1.1. Existing School Site

The Catlin Elementary School site consists of three parcels bounded by Long Avenue on the west, 2nd Avenue NW on the east, and private properties to the north and south. The project site location and vicinity are shown in Figure 1.

Email communication, M. Kardas, PE—Community Development Director/City Engineer, City of Kelso, Nov. 2, 2020.

Figure 1 **Site Location and Vicinity**

Transportation Technical Report for **Huntington Middle School Interim Use of Catlin Elementary School Site**

The original school building was constructed in 1947 and has 27,870 square feet (sf) of space. A 24,429-sf addition with classroom, office, and library, was built in 1979.² The site also has a 3,112-sf covered play area, added in 1989. Hard-and soft-surface play areas exist in the middle of the site east and south of the school buildings and a natural turf play field on the eastern side of the site.

Surface parking areas with a total of about 59 space are located along the northwest, south, and southeast portions of the buildings. The northwest lot (with 16 spaces) has two one-way access driveways on Long Avenue with entry at the south and exit at the north. The south lot (with 25 spaces) has a full-access driveway on Long Avenue located just north of Clark Street and an internal access connection south of the building to 3rd Avenue NW, which terminates at the school property. There are 9 spaces adjacent to the east site of the south school building and another 9 located on the south side of the school-bus load/unload area and accessed from 3rd Avenue NW.

There is a signed 5-minute load zone for student pick-up and drop-off (Monday through Friday) on east side (northbound direction) of Long Avenue. School-buses access on-site load/unload area from northbound 3rd Avenue NW and exit to Long Avenue through the south parking lot.

Over the past five years, enrollment at Catlin Elementary School has ranged from 302 to 373 students with the highest enrollment during the 2017-18 school year.³

1.1.2. Proposed Site Changes

After Catlin Elementary students are relocated to the new Lexington Elementary School that is currently under construction, the Kelso School District would reconfigure and augment the Catlin Elementary site in order to temporarily house Huntington Middle School, with its expected enrollment of 580 students. The District would place five double portables (10 classrooms) in the central portion of the site where hard- and soft-surface play areas currently exist. Two restroom portables would be placed east of the northern school building and the natural turf play field would be resurfaced to provide a passenger-vehicle load/unload area for students as well as added parking (an additional 60 spaces) for staff and visitors.

The new load/unload and parking area would have two new access driveways serving one-way traffic through the site. It would have an entry from 2nd Avenue NW opposite Galloway Avenue and an exit to 2nd Avenue NE at the south side of the site (about 185 feet south of Galloway Street). School buses would use the same routes and access patterns as formerly used to serve Catlin Elementary. They would arrive from the south using northbound 3rd Avenue NW and loading/unload students on site in the area south of the covered play structure. Buses would exit the site to the west using the internal drive connection south of the school building to the south driveway on Long Avenue. The site, planned portable placement, and access configuration are shown in Figure 2.

The site would be used as the interim Huntington Middle School for the 2021-2022 school year (September through June). After the 2012-22 school year, the site may be re-purposed for alternative non-K-12 uses (such as early learning and pre-school programs and/or partnerships with other community service agencies) or could be sold. Future analyses (without and with the project) presented in this report reflect year 2022 conditions to reflect the period when the interim middle school use would occur.

Construction Services Group, Kelso School District, No. 458 Study and Survey - School Facilities and Organization Information and Condition of Schools, Inventory of Facilities and Buildings (as of November 29, 2017), December 2017. Office of Superintendent of Public Instruction (OSPI), Online Washington School Report Card data portal, 2020.

2. **BACKGROUND CONDITIONS**

This section presents the existing and future conditions without the proposed project. The impacts of the proposed project were evaluated against these base conditions. For comparison, and to provide an analysis of potential new traffic and parking impacts, year 2022 without-project conditions assume the existing Catlin Elementary School would remain closed and unused, since its students will have relocated to the new Lexington Elementary School. The following sections describe the existing roadway network, traffic volumes, traffic operations (in terms of levels of service), traffic safety, transit facilities, non-motorized facilities, and parking.

Five off-site intersections plus the site access driveways were selected for study based on travel routes expected to be used by family drivers, buses, and staff to access and egress the site area. The following study area intersections were identified for analysis for both the morning and afternoon peak hours.

Signalized Intersection

1st Avenue NW (State Route [SR] 411) / Fishers Lane

Stop-Controlled Intersections

- Fishers Lane / Fishers Court
- Long Avenue / Fishers Lane
- Grant Street / 1st Ave NW
- W Main St / 2nd Avenue NW

Site Access Intersections

- Long Avenue / North Lot Exit
- Long Avenue / North Lot Entry
- Long Avenue / South Lot Access
- 2nd Avenue NW / Planned New Entry
- 2nd Avenue NW / Planned New Exit

2.1. Roadway Network

The following describes key roadways in the site vicinity. Roadway classifications are based on the City's Functional Classifications.⁴

Long Avenue is a north-south Major Collector that connects Cowlitz Way on the south to Fishers Lane and the north City limit. Near the school, it has one travel lane in each direction. There are sidewalks, curbs, and gutters on both sides. There is a five-minute school load/unload zone on the east side of the street adjacent to Catlin Elementary. The posted speed limit is 25 miles per hour (mph); however, in the vicinity of the school it is signed as a School Zone with speed limit of 20 mph from 7:30 A.M. to 4:00 P.M. There are signed and marked school crosswalks in two locations—one directly in front of the school and one on the north leg of the intersection with Clark Street.

Fishers Lane is an east-west Major Collector that extends west from 1st Avenue NW (West Side Highway / SR 411) to Long Avenue. West of Long Avenue, it continues as a local access street to the west City limit. The roadway has one lane in each direction with right-turn pockets at its intersections with 1st Avenue NW and Long Avenue. The posted speed limit is 25 mph. It has intermittent segments with sidewalk and curbs on both sides.

1st Avenue NW (SR 411 / West Side Highway) is a north-south Minor Arterial and designated State Route aligned along the west side of the Cowlitz River and extending north from SR 432. Near the site, it has one lane in each direction with turn lanes added at major intersections, including Fishers Lane. North of Fishers Lane, the posted speed limit is 45 mph; south of Fishers Lane, the speed limit is 35 mph. Its intersection with Fishers Lane is signalized. The roadway has curb and sidewalk along the west side south of Fishers Lane; there are paved or gravel shoulders on both sides to the north.

City of Kelso, West Kelso Subarea Plan Existing Conditions Report, October 2015.

Galloway Avenue is local street that provides access to residential uses south of Fishers Lane and connects to 2nd Avenue NW. It has curbs and sidewalks on both sides. There are "No Parking" signs on the east side of the north-south segment south of Fishers Lane. Its approach to Fishers Lane is stop-sign controlled; its intersection at 2nd Avenue NW is uncontrolled.

2nd Avenue NW is a north-south local street that connects between Galloway Avenue on the north and Main Street on the south. Near the site, it has sidewalks, curbs, and gutters on both sides. Parallel onstreet parking occurs on both sides. Its approaches at the Grant Street and Main Street intersections are stop-sign controlled.

3rd Avenue NW is a north-south local street that connects between the school site on the north, where it dead-ends at a gated school access, and Main Street. Near the school, it has paved gravel shoulders with intermittent segments of sidewalk. Parking occurs within the shoulders on both sides. Its approaches at the Grant Street and Main Street intersections are stop-sign controlled.

Grant Street is an east-west local street that connects between 1st Avenue NW (SR 411) on the east to NW 5th Avenue at the Cowlitz Way intersection. It has curbs and sidewalks with parallel parking on both sides. Its approach to 1st Avenue NW is stop-sign controlled. The segment between 4th Avenue NW and NW 5th Avenue is designated for one-way eastbound travel only.

Since the proposed project is planned for one school year beginning in 2021, existing study-area intersection channelization and operating conditions (including traffic control) were assumed to remain unchanged from existing conditions.

2.2. Traffic Volumes

2.2.1. Existing Conditions

The school day at Huntington Middle School is 7:30 A.M. to 3:15 P.M. Those times are assumed to remain in effect when it is temporarily housed at the Catlin Elementary site. Due to the ongoing COVID-19 pandemic conditions, traffic data in the site vicinity were derived from counts collected in 2015 and 2017. Table 1 lists count data used for this analysis; data sheets are provided in Appendix A.

Table 1. Traffic Count Data

Type & Location	Day(s), Date(s)	Count Periods	Source
Peak Period Turning Movement C	ounts		
1st Avenue NW / Fishers Lane	Wed., May 3, 2017	7:00 to 9:00 a.m. 4:00 to 6:00 p.m.	Idax Data Solutions
Long Avenue / Fishers Lane	Wed., May 3, 2017	7:00 to 9:00 A.M. 4:00 to 6:00 P.M.	Idax Data Solutions
Catlin St / Cowlitz Way	Wed., May 3, 2017	7:00 to 9:00 a.m. 4:00 to 6:00 p.m.	Idax Data Solutions
Catlin St / Cowlitz Way	Wed., June 16, 2015	4:00 to 6:00 P.M.	Idax Data Solutions
Main St / Allen St Bridge	Wed., June 16, 2015	4:00 to 6:00 P.M.	Idax Data Solutions
Machine Counts			
Allen St east of 1st Ave NW	Tue., May 2 – Wed., May 3, 2017	48-hours	Idax Data Solutions
Cowlitz Way between Pacific Ave and Long Ave	Tue., May 2 – Wed., May 3, 2017	48-hours	Idax Data Solutions
SR 411 north of Fishers Lane	Year 2010 to 2020	24 hours / day	WSDOT

Transportation Technical Report for **Huntington Middle School Interim Use of Catlin Elementary School Site**

The morning peak period counts reflect volumes during the anticipated morning peak hour for Huntington Middle School (likely 7:00 to 8:00 A.M.). However, the PM peak period counts began the hour after the anticipated afternoon dismissal peak hour for the school—likely to occur from 3:00 to 4:00 P.M. Therefore, based on volumes from the 48-hour machine counts on the Allen Street Bridge, the 3:00 to 4:00 P.M. volumes were estimated to be 93% of the 4:00 to 5:00 P.M. traffic volumes. Turning movements at locations where counts were not available—local streets including Galloway Avenue, Grant Street, and 2nd Avenue NW—were estimated using the available link-volume data and projections based on the land uses and functions of those local streets. The historical volumes were then adjusted to reflect normalized traffic conditions for this analysis based on a review of 10 years of monthly traffic statistics from the Washington State Department of Transportation (WSDOT) permanent traffic recorder north of the site on SR 411. Based on that review, a 1% compound annual growth rate was applied to the historical counts to reflect existing 2020 conditions. The existing traffic volumes for the anticipated school peak hours are shown on Figure 3. The existing volumes reflect normalized conditions if there was no COVID-19 pandemic.

2.2.2. Future Without-Project Conditions

Future traffic volume forecasts for 2022 conditions without the project were developed using the same 1% compound annual growth rate described above. This growth rate was coordinated with City staff and is consistent with rates used for traffic analyses of other developments in the City. The forecast 2022without-project morning and afternoon peak hour traffic volumes are shown on Figure 4.

2.3. Traffic Operations

2.3.1. Off-Site Study Area Intersections

Traffic operations are evaluated based on level-of-service (LOS), which is a qualitative measure used to characterize intersection operating conditions. Six letter designations, "A" through "F," are used to define level of service. LOS A is the best and represents good traffic operations with little or no delay to motorists. LOS F is the worst and indicates poor traffic operations with long delays.

Levels of service for the study area intersections were determined using methodologies established in the Highway Capacity Manual (HCM), 6th Edition. Appendix B summarizes HCM level of service thresholds and definitions for unsignalized intersections. Levels of service for the study area intersections were determined using the Synchro 10.3 analysis software and reported using the Synchro module for signalized intersections and the HCM 6 module for unsignalized intersections. The models reflect existing intersection geometries and channelization; these characteristics were assumed to remain unchanged for future 2022 conditions.

Transportation Research Board 2016.

Figure 3
Existing Traffic Volumes
Morning and Afternoon Peak Hours

Figure 4
Forecast 2022 Without-Project Volumes
Morning and Afternoon Peak Hours

Transportation Technical Report for **Huntington Middle School Interim Use of Catlin Elementary School Site**

One of the five study-area intersections is signalized; the remaining four are stop-sign controlled. Table 2 summarizes existing and forecast 2022 levels of service without the proposed project for both the morning and afternoon peak hour conditions. The LOS calculation sheets are provided in Appendix B.

Table 2. Level of Service Summary – Existing and 2022-Without-Project Conditions

		Morning F	Peak Hou	r	Afternoon Peak Hour						
Intersections	Exi	sting	Withou	t Project	Exi	sting	Withou	t Project			
Signalized	LOS 1	Delay ²	LOS	Delay	LOS	Delay	LOS	Delay			
1st Avenue NW / Fishers Lane	В	12.4	В	12.5	С	20.7	С	21.1			
Stop-sign Controlled	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay			
Fishers Lane / Galloway Avenue	А	0.5	Α	0.5	Α	0.4	Α	0.5			
Northbound Movements	Α	9.8	Α	9.8	В	10.7	В	10.7			
Westbound Left Turns	Α	7.6	Α	7.6	Α	8.0	Α	8.0			
Long Avenue / Fishers Lane	С	17.6	С	19.9	А	6.2	Α	6.6			
Northbound Left Turn	Α	7.9	Α	8.0	Α	7.6	Α	7.6			
Eastbound Movements	С	15.5	С	15.9	С	15.9	С	16.5			
Westbound Movements	F	50.8	F	58.2	С	24.1	D	25.9			
Southbound Left Turn	Α	7.8	Α	7.8	Α	8.6	Α	8.6			
1st Avenue NW / Grant Street	Α	0.3	Α	0.3	Α	0.4	А	0.4			
Northbound Left Turn	Α	9.2	Α	9.2	Α	8.5	Α	8.5			
Eastbound Movements	В	13.2	В	13.2	С	16.9	С	17.4			
2 nd Avenue NW / Main Street	А	0.2	А	0.2	А	0.0	Α	0.0			
Southbound Right Turns	Α	9.2	Α	9.9	Α	10.0	В	10.1			

Source: Heffron Transportation, Inc., November 2020.

As shown, all study-area intersections operate at LOS C or better overall during the morning and afternoon peak hours. All movements except one (described in the following paragraph) at the stopcontrolled intersections, currently operate at LOS C or better during both peak hours. The projected increases in background traffic is forecast to add some delay to the study-area intersections by 2022.

The westbound approach of Fishers Lane at Long Avenue currently operates at LOS F during the morning peak hour. Extrapolating the four hours of traffic count data available, volumes at this intersection may be sufficiently high to meet the minimum volume thresholds for conversion to multiway-stop control as outlined in Section 2B.07 of the Manual on Uniform Traffic Control Devices (MUTCD) for Streets and Highways. The thresholds are met when an intersection has: 1) an average of 300 or more vehicles per hour on the major street approaches (total of both directions) for any 8 hours of an average day; and 2) averages of 200 or more vehicles per hour entering from the minor street approaches (total of both approaches) for the same 8 hours, with average delay to minor-street vehicular traffic of at least 30 seconds per vehicle. If converted to all-way-stop control, the intersection would operate at LOS C overall in 2022 with all movements at LOS C or better

US Department of Transportation, Federal Highway Administration, 2009.

^{1.} LOS = Level of service.

^{2.} Delay = Average seconds of delay per vehicle.

2.3.2. Off-Site Study Area Intersections

Access to the school's on-site parking occurs from Long Avenue. No analyses of driveway operations were performed for existing conditions due to the COVID-19 pandemic measures. As previously discussed, the 2022-without-project conditions assume that the site would be vacant and unused since the existing students would be relocated to the new Lexington Elementary.

Parking Supply

The existing site has on-site parking areas with a total of about 59 spaces in three areas. No parking occupancy counts were preformed due to conditions related to the COVID-19 pandemic.

Traffic Safety 2.5.

Collision data for the study area intersections and road segment were obtained from WSDOT. These data, reflecting the period between January 1, 2017 and October 31, 2020 (3.8 years), were examined to determine if there are any unusual traffic safety conditions that could impact or be impacted by the proposed project.

Table 3 summarizes the collision data. As shown, the highest numbers of collisions occurred at the Fishers Lane / Long Avenue and Grant Street / 1st Avenue NW intersections—15 at each location. The most frequent collision types were right-angle collisions. None of the collisions reported in the study area resulted in fatalities. In 2018, there were nine collisions at the Fishers Lane / Long Avenue intersection and seven were either right-angle or left-turn collisions. As noted in Section 2B.07 of the MUTCD another possible criterion for installing multi-way-stop control is when "... five or more reported crashes in a 12-month period that are susceptible to correction by a multi-way stop installation. Such crashes include right-turn and left-turn collisions as well as right-angle collisions."

Table 3. Collision Summary (January 1, 2017 through October 31, 2020)

Intersection Control Type	Rear- End	Side- Swipe	Head- On	Left Turn	Right Angle	Ped / Cycle	Other a		Average / Year
Signalized Intersections									
1st Avenue NW / Fishers Lane	2	0	0	0	2	2	1	7	1.8
Unsignalized Intersections									
Long Avenue / Fishers Lane	4	0	0	1	10	0	0	15	3.9
Fishers Lane / Galloway Avenue	2	0	0	1	0	1	1	5	1.3
1st Avenue NW / Grant Street	2	0	1	1	11	0	0	15	3.9
2 nd Avenue NW / Main Street	0	0	0	0	0	0	0	0	0.0
Road Segments									
Long Ave, between Fishers Ln and W Cowlitz Wy	1	0	0	0	2	0	3	6	1.6

Source: Washington State Department of Transportation, November 2020.

a. Other collisions were six vehicle struck fixed object (three signal pole, one utility pole, one metal sign post, one fence) and one vehicle struck parked vehicle.

2.6. Transit Facilities and Service

River Cities Transit (RCT) provides bus service in the site vicinity. The closest bus stops are located about 550 feet away to the southeast Cowlitz Way at Long Avenue. These stops are served by RCT Routes 44, 45, and 57. Each route is described below.

Route 44 provides weekday east-west loop service along Ocean Beach Highway (SR 4) with parkand-ride options west of Heron Pointe. Route 44 connects with Routes 45, 56, and 57 at Kelso Station, where Amtrak and Greyhound provide rail and bus service. Weekday service operates from 6:30 A.M. to about 6:00 P.M. with 60-minute headways (time between consecutive buses).

Route 45 provides weekday and Saturday loop service with stops between Longview and Kelso near the US Post Office, shopping centers, the courthouse, and other public offices. Route 45 meets also connects with Routes 31, 32, and 33 at the Transit Center and with Routes 44, 56, and 57 at Kelso Station, where Amtrak and Greyhound provide rail and bus service. Weekday service operates from 6:30 A.M. to about 7:00 P.M. with 20- to 30-minute headways.

Route 57 provides weekday and Saturday loop service from Kelso to Longview destinations including Lower Columbia College and the Triangle Shopping Center. Route 57 connects with Routes 44, 45, and 56 at Kelso Station, where Amtrak and Greyhound provide rail and bus service. Weekday service operates from 6:30 A.M. to about 6:00 P.M. with 60-minute headways.

School bus transportation is available to transportation-eligible students within the District. Catlin Elementary School was previously served with 4 full-size (typically 40 feet long) school buses and 3 smaller special education (SPED) buses (typically up to 25-feet long).

Non-Motorized Transportation Facilities 2.7.

As described in the *Roadway Network* section, the roadways near the school site generally have curb and sidewalks on one or both sides. There are also marked and signed crosswalks in several locations as listed below:

- 1st Avenue NW (SR 411) / Fishers Lane: Crossing north and west legs
- Long Avenue: Mid-block at school entrance
- Long Avenue / Fishers Lane: crossing south leg
- Long Avenue / Clark Street: crossing north leg

3. PROJECT IMPACTS

This section describes the conditions that would exist with Huntington Middle School temporarily relocated to the Catlin Elementary School site with enrollment of up to 580 students. Vehicle trip estimates associated with the interim school use were added to the 2022-without-project traffic volume forecasts. Level of service analyses were performed to determine the proposed project's impact on traffic operations in the study area. Other potential impacts to parking, safety, transit, and non-motorized conditions were reviewed.

3.1. **Roadway Network**

No changes to the surrounding roadway network are proposed. However, the project would resurface the natural turf play field to create a passenger-vehicle load/unload area for students as well as added parking for staff and visitors. The new load/unload and parking area would have two new access driveways serving one-way traffic through the site with an entry from 2nd Avenue NW opposite Galloway Avenue and an exit to 2nd Avenue NE at the south side of the site (about 185 feet south of Galloway Street).

Traffic Volumes 3.2.

The proposed project is expected to generate vehicular, pedestrian, and bicycle activity on the surrounding transportation network. With the interim use, the school is expected to have an enrollment of up to 580 students. The following describes the method used to estimate project-generated traffic for the middle school.

3.2.1. School Trip Generation

Trip generation estimates for Huntington Middle School's interim use of the Catlin site were derived using rates published for Middle / Junior High Schools (Land Use 522) in the Institute of Transportation Engineers' (ITE) Trip Generation Manual.⁸ The rates based on the number of students were applied using the expected enrollment (580 students). Table 4 presents the estimated trip generation for three peak hours—morning arrival, afternoon dismissal, and the traditional commuter PM peak hours.

Table 4. Huntington Middle School Interim Use Trip Generation at Catlin Elementary Site

	Size	Daily	Morn	ing Peak	Hour	Aftern	oon Pea	k Hour	PM	Peak H	our	
Land Use	(students)	Trips	In	Out	Total	In	Out	Total	ln	Out	Total	
Middle School Trip F	Rates ¹	2.13 trips / student	3 trips 0.70 trips / student				trips / st % in, 54%		0.17 trips / student (49% in, 51% out)			
Huntington Middle	580	1,240	223	183	406	93	110	203	49	50	99	
Elementary School	Trip Rates ²	1 80 trins 0.67 trins / student			0.34 trips / student (45% in, 55% out)			7 trips / s 6 in, 52%				
Catlin Elementary	373	700	135	115	250	57	70	127	30	3	63	
Net Change	207	540	88	68	156	36	40	76	19	17	36	

Source: Heffron Transportation Inc., May 2020.

^{1.} ITE, Trip Generation Manual, LU 522, 10th Edition, September 2017.

ITE, Trip Generation Manual, LU 520, 10th Edition, September 2017.

Transportation Technical Report for **Huntington Middle School Interim Use of Catlin Elementary School Site**

These estimates reflect all trips generated by the school including student pick-up/drop-off, school-bus trips, family-vehicle and visitor trips, teacher/staff trips, and typical after-hours use of play fields or other on-site facilities. The District estimates the school would be served by 12 full-size school buses and 1 or 2 SPED smaller buses.

During the morning arrival and afternoon dismissal peak hours, most trips would consist of familydrivers and school buses taking students to and from school, with some teacher and staff trips as well as school volunteers. Trips at middle schools during the commuter PM peak hour may consist of teachers or staff leaving for the day, some after-school-activity related trips, and community use of facilities (such as playfields, play areas, and/or gymnasiums and assembly spaces). It is important to note that the project site for the interim school will not have many of the typical facilities common at permanent middle schools such as a full-size gymnasium, playfields, or theaters. These types of facilities are typically used for events and extracurricular activities as well as by local communities and surrounding neighborhoods. As a result, they are often the primary cause of traffic generation during the commuter PM peak hour (since middle schools generally are dismissed prior to the PM peak). Therefore, the PM peak hour trip estimates are likely conservatively high for this interim site use at the Catlin site.

As shown, the school is estimated to generate up to 1,240 trips per day, with 406 trips in the morning arrival peak hour, 203 trips in the afternoon dismissal peak hour, and 99 trips in the PM peak hour of the adjacent roadways. A comparison to the site's current use as an elementary school with enrollment up to 373 students is provided for context. The middle school is expected to generate roughly 60% more trips during each of the analysis peak hours than the elementary school. However, since the elementary school students will be relocated to the new Lexington Elementary School regardless of the subsequent use of the space, and because the middle school has slightly different peak hour than the elementary school, the transportation analysis performed herein assumes that all middle school trips would be new to the study area, which reflects the worst-case condition.

3.2.2. Project Trip Distribution and Assignment

Trip distribution patterns of school-generated trips were developed based on a combination of the overall residential density within the enrollment area and anticipated traffic patterns within the vicinity. Google Maps predictive travel times⁹ were utilized to estimate routes to and from the site based on the respective travel times. Separate project trip distribution patterns and assignments were developed for morning and afternoon peak hours and also account for typical patterns of some family drivers linking school drop-off and pick-up trips with work or other trips. 10

The estimated peak hour trips were assigned to the roadway network using the estimated distribution patterns described above. Figure 5 and Figure 6, show the trip distribution patterns and trip assignments for the morning arrival and afternoon dismissal peak hours, respectively.

3.2.3. Project Trip Distribution and Assignment

The school-generated traffic was added to the forecast 2022-without-project volumes to reflect forecast 2022-with-project traffic volumes. Figure 7 shows the total forecast 2022-with-project volumes for the morning and afternoon peak hours.

A portion of trips generated by the school are expected to be linked to existing trips that would already be on the street system (e.g. SR 411) and were estimated based on a study conducted for the Northshore School District (Gibson Traffic Consultants, ITE School Pass-By Report, January 2012) from surveys of parents at four elementary and middle schools. It found an average 42% of morning school trips and 38% of afternoon school trips were linked to existing trips that would occur with or without the school activity.

Google Maps, https://www.google.com/maps, Accessed September 2020.

Figure 5 **Project Trip Distribution and Assignment Morning Peak Hour**

Figure 6
Project Trip Distribution and Assignment
Afternoon Peak Hour

Figure 7
Forecast 2022 With-Project Traffic Volumes
Morning and Afternoon Peak Hours

3.3. **Traffic Operations**

Intersection levels of service for future with-project conditions were evaluated using the same methodology described previously. The interim school use would generate vehicular and non-motorized trips at and around the school. The operational analyses accounted for potential increases in pedestrian crossing activity, peaking characteristics of school traffic (school drop-off and pick-up primarily occurs during about 20 minutes in the peak hour), and the added school bus trips.

3.3.1. Off-Site Study Area Intersections

Levels of service for the off-site study area intersections were calculated using the 2022-with-project traffic volumes and the same methodology described previously. Table 5 shows the results of the analysis; levels of service for the 2022-without-project conditions are provided for comparison. The LOS calculation sheets are provided in Appendix B.

Table 5. Level of Service Summary – 2022-Without and With-Project Conditions

		Morning P	eak Hou	r	Afternoon Peak Hour						
Intersections	Withou	t Project	With	Project	Withou	t Project	With Project				
Signalized	LOS ¹	Delay ²	LOS	Delay	LOS	Delay	LOS	Delay			
1st Avenue NW / Fishers Lane	В	12.5	В	11.4	С	21.1	С	23.9			
Stop-sign Controlled	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay			
Fishers Lane / Galloway Avenue	А	0.5	А	4.9	А	0.5	А	2.1			
Northbound Movements	А	9.8	С	21.0	В	10.7	В	11.5			
Westbound Left Turns	А	7.6	Α	8.2	Α	8.0	Α	8.2			
Long Avenue / Fishers Lane	С	19.9	Ε	40.5	Α	6.6	Α	7.2			
Northbound Left Turn	А	8.0	Α	8.0	Α	7.6	Α	7.6			
Eastbound Movements	С	15.9	С	16.6	С	16.5	С	17.0			
Westbound Movements	F	58.2	F	113.2	D	25.9	D	27.7			
Southbound Left Turn	А	7.8	Α	7.8	Α	8.6	Α	8.7			
1st Avenue NW / Grant Street	А	0.3	Α	3.1	Α	0.4	Α	0.6			
Northbound Left Turn	А	9.2	Α	9.1	Α	8.5	Α	8.6			
Eastbound Movements	В	13.2	В	14.2	С	17.4	С	16.9			
2 nd Avenue NW / Main Street	А	0.2	Α	0.5	А	0.0	Α	0.1			
Southbound Right Turns	А	9.9	Α	10.1	В	10.1	В	10.2			

Source: Heffron Transportation, Inc., November 2020.

As shown, the additional traffic and pedestrian activity generated by the interim school use is expected to add some delay to the study area intersections and turning movements during both the morning and afternoon peak hours. However, all but the Long Avenue / Fishers Lane intersection, would continue to operate at LOS C or better overall with the project during both morning and afternoon peak hours. Other than westbound from Fishers Lane at Long Avenue during the morning peak hour, all movements are forecast to operate at LOS D or better with the project during both peak hours.

^{3.} LOS = Level of service.

^{4.} Delay = Average seconds of delay per vehicle.

Transportation Technical Report for **Huntington Middle School Interim Use of Catlin Elementary School Site**

As described previously, westbound movements at the Long Avenue / Fishers Lane intersection currently operate at LOS F and are forecast to continue operating at LOS F in 2022 without school traffic. The relatively small increase in trips generated by the interim school at this intersection (less than 8% of total entering traffic) is projected to disproportionately increase delay. However, if the intersection were converted to all-way-stop control as described previously, it would operate at LOS C overall with all movements operating at LOS C or better during both peak hours.

3.3.2. Site Access

The site access driveways are expected to operate at LOS A overall, with all movements operating at LOS D or better during both the morning and afternoon peak hours.

Parking Supply and Demand 3.4.

The natural turf play field would be resurfaced to provide a passenger-vehicle load/unload area for students as well as added parking (60 spaces) for staff and visitors. When added to existing parking on the site, the interim school would have up to 119 parking spaces for staff and visitors. The creation of two access driveways on 2nd Avenue NW would likely eliminate two or three parallel on-street parking spaces on the west side of the street. No other changes to on-site or on-street parking supply are proposed.

3.4.1. School Day Parking

School-day parking at middle schools is primarily influenced by staffing levels and family-volunteer activity. Huntington Middle School is expected have 62 staff members—the same number as currently employed. 11 Future parking demand estimates were developed from rates published in ITE's Parking Generation. ¹² Based on the range of rates available, the interim use could generate peak school-day parking demand of 52 to 87 vehicles, depending on the number of employees and visitors on site simultaneously. The higher end of the demand range represents conditions that may occur with higher numbers of family volunteers, which often occurs midday.

The site currently has 59 parking spaces and the planned improvements to accommodate the interim use would add 60 more spaces for a total of 119 spaces, which would accommodate the estimated peak school-day demand. However, it is noted that some staff and/or visitors could choose to park on-street near the school for convenience.

3.4.2. Event Parking

The site could host events periodically throughout the school year; however, the lack of athletic facilities and limited assembly spaces would reduce the number and level of attendance for occasional school or outside events. Large events happen relatively infrequently and would be held at off-site locations (such as Lexington Elementary or Kelso High School) during the 2021-2022 school year.

3.5. Traffic Safety

The collision data provided for the study area showed that all intersections averaged fewer than five collisions per year over the 3.8-year analysis period and did not indicate any unusual collision patterns that would impact or be impacted by the proposed project. However, as noted, there were nine collisions at the Long Avenue / Fishers Lane intersection in 2018 and seven were right-angle or left-turn collisions. If the intersection is converted to all-way-stop control, it may contribute to reduced number and severity of collisions.

ITE, 5th Edition, January 2019.

Email communication, P. Iverson, Construction Services Group, October 23, 2020.

3.6. Transit

A small number of transit trips may be generated by the teachers or staff at the site; however, the traffic estimates do not rely on reductions in auto trips to account for any staff transit usage. The closest bus stops are located about 550 feet away to the southeast on Cowlitz Way at Long Avenue. The project is not expected to result in adverse impacts to transit facilities or service.

According to District staff, when Huntington Middle School is relocated to the Catlin site, it will be served by 12 full-size buses and 1 or 2 SPED buses, based on current needs. In the morning, all 12 buses of the larger buses would arrive to drop off students between 7:15 and 7:40 A.M.; in the afternoon, 6 of the larger buses would stage on site for the first wave of students to board, then 6 more would come from Kelso High School in a second wave to pick up the remaining students.¹³ The buses were accounted for in the trip generation and traffic operations analysis. No adverse transit impacts are expected.

3.7. Non-Motorized Transportation Facilities

The interim school use is expected to result in pedestrian trips within the site vicinity. It is anticipated that the largest increases in pedestrian activity would occur along 2nd Avenue NW, where some student load/unload may occur along the west side of the street during morning arrival and afternoon dismissal periods. No significant adverse impacts to non-motorized access or facilities is expected, and no improvements to non-motorized facilities are anticipated.

Email communication, P. Iverson, - Project Manager, Capital Projects and Planning, Seattle Public Schools, Nov. 2020.

4. FINDINGS AND RECOMMENDATIONS

The following sections summarize the findings and recommendations of the analysis.

- The proposal would make temporary site changes to accommodate the interim use of the site by Huntington Middle School for the 2021-22 school year, with up to 580 students.
- With 580 students, interim use by Huntington Middle School is projected to generate up to 406 trips (223 in, 183 out) during the morning peak hour (from 7:00 to 8:00 A.M.) and 203 trips (93 in, 110 out) during the afternoon peak hour (from 3:00 to 4:00 P.M.). These estimates do not account for the removal of trips previously generated by the existing Catlin Elementary School.
- Similar to prior conditions with the site housing an elementary school, some traffic congestion is expected during morning arrival and afternoon dismissal periods along the roadways that surround the site. New traffic is expected along 2nd Avenue NW from which a new passenger-vehicle load/unload area would be accessed.
- The additional traffic and pedestrian activity generated by the interim school use is expected to add some delay to study area intersections and turning movements during morning and afternoon peak hours. All but the Long Avenue / Fishers Lane intersection, would continue to operate at LOS C or better overall with the project during morning and afternoon peak hours.
- Due to poor existing morning operations for westbound movements at the Long Avenue / Fishers Lane intersection, the relatively small increase in trips generated by the interim school at this intersection (less than 8% of total entering traffic) is projected to disproportionately increase delay. However, if the intersection were converted to all-way-stop control, it would operate at LOS C overall with all movements operating at LOS C or better during both peak hours. Existing traffic volumes, traffic operations, and historic collision data support the conversion of this intersection to all-way-stop control.
- School-day parking demand could be accommodated by the planned on-site supply. Some parking demand may occur on-street on roadways surrounding the site.
- The site could host events periodically throughout the school year; however, the lack of athletic facilities and limited assembly spaces would reduce the number and level of attendance. Large events happen infrequently and would be held at off-site locations.

Based the above findings, the interim use by Huntington Middle School of the Catlin Elementary School site would not result in significant adverse impacts to traffic operations or parking.

4.1. Recommendation

Prior to re-opening, KSD should coordinate with the City of Kelso to determine if the City supports conversion to all-way-stop control at the Long Avenue / Fishers Lane intersection to address the existing poor operations during the morning peak hour. If so, the District could contribute a proportionate share of the costs for that conversion based on school traffic expected to be added.

In addition, KSD and Huntington Middle School should develop a Transportation Management Plan (TMP) that communicates to families and staff expectations and travel routes for the interim school site. The TMP should also include a review of safety elements around the site such as school-zone speed limits and crossing guard locations to determine if any changes are needed.

APPENDIX A Traffic Count Data Sheets

Two-Hour Count Summaries FISHERS LN 1ST AVE NW WESTSIDE HWY Interval 15-min Rolling Eastbound Westbound Northbound Southbound Start Total One Hour UT LT TH RT UT LT ΤH RT UT LT TH RT UT LT ΤH RT 7:00 AM 7:15 AM 7:30 AM 1,086 7:45 AM 8:00 AM 1,111 8:15 AM 1,131 8:30 AM 1,189 8:45 AM 1,139 Count Total 1,059 2,225

1,189

Note: Two-hour count summary volumes include heavy vehicles but exclude bicycles in overall count.

Peak Hour

Mark Skaggs: (425) 250-0777

Interval		Heavy	Vehicle	Totals				Bicycles				Pedestria	ns (Cross	ing Leg)	
Start	EB	WB	NB	SB	Total	EB	WB	NB	SB	Total	East	West	North	South	Total
7:00 AM	0	0	1	4	5	1	0	0	1	2	0	0	0	0	0
7:15 AM	0	0	0	1	1	0	0	1	2	3	0	0	0	0	0
7:30 AM	0	0	1	0	1	1	0	0	0	1	0	0	0	0	0
7:45 AM	0	0	3	1	4	0	0	0	0	0	0	0	0	0	0
8:00 AM	1	0	2	5	8	0	0	0	0	0	0	0	0	0	0
8:15 AM	0	0	0	5	5	0	0	0	0	0	0	0	0	0	0
8:30 AM	0	0	0	8	8	0	0	0	0	0	0	0	0	0	0
8:45 AM	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0
Count Total	1	0	8	24	33	2	0	1	3	6	0	0	0	0	0
Peak Hr	1	0	5	19	25	0	0	0	0	0	0	0	0	0	0

Two-Hour Count Summaries	,
--------------------------	---

Mark Skaggs: (425) 250-0777

Interval		FISHE	RS LN			(0			1ST A	VE NW		V	/ESTS	DE HW	Υ	45 min	Rolling
Interval Start		Easth	ound			West	bound			North	bound			South	bound		15-min Total	One Hour
Start	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	iotai	Offic Flour
4:00 PM	0	73	0	15	0	0	0	0	0	12	147	0	0	0	116	42	405	0
4:15 PM	0	78	0	20	0	0	0	0	0	20	149	0	0	0	99	42	408	0
4:30 PM	0	82	0	14	0	0	0	0	0	17	149	0	0	0	122	48	432	0
4:45 PM	0	78	0	8	0	0	0	0	0	21	160	0	0	0	109	37	413	1,658
5:00 PM	0	71	0	15	0	0	0	0	0	25	183	0	0	0	85	35	414	1,667
5:15 PM	0	82	0	14	0	0	0	0	0	21	173	0	0	0	105	29	424	1,683
5:30 PM	0	80	0	19	0	0	0	0	0	28	150	0	0	0	94	41	412	1,663
5:45 PM	0	83	0	19	0	0	0	0	0	30	126	0	0	0	79	48	385	1,635
Count Total	0	627	0	124	0	0	0	0	0	174	1,237	0	0	0	809	322	3,293	0
Peak Hour	0	313	0	51	0	0	0	0	0	84	665	0	0	0	421	149	1,683	0

Interval		Heavy	Vehicle	Totals		Bicycles					Pedestrians (Crossing Leg)						
Start	EB	WB	NB	SB	Total	EB	WB	NB	SB	Total	East	West	North	South	Total		
4:00 PM	0	0	1	2	3	1	0	2	0	3	0	0	0	0	0		
4:15 PM	1	0	0	0	1	1	0	0	1	2	0	0	0	0	0		
4:30 PM	0	0	2	1	3	0	0	0	0	0	0	2	0	0	2		
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
5:00 PM	1	0	0	0	1	0	0	0	1	1	0	0	0	0	0		
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
5:30 PM	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0		
5:45 PM	0	0	0	1	1	0	0	0	1	1	0	0	0	0	0		
Count Total	2	0	4	4	10	2	0	2	3	7	0	2	0	0	2		
Peak Hr	1	0	2	1	4	0	0	0	1	1	0	2	0	0	2		

IIWA-HAIIR	Count Sum	mariae
1 1 W O-1 10 U 1	Count Sun	ıı ı ıaı ı c ə

Mark Skaggs: (425) 250-0777

Interval		FISHE	ER LN			FISHE	R LN			LONG	G AVE		COLU	JMBIA I	HEIGH	rs RD	45 min	Dalling
Start		Eastb	ound			Westk	ound			North	bound			South	bound		15-min Total	Rolling One Hour
Start	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	Total	One riou
7:00 AM	0	2	2	1	0	31	2	3	0	0	15	12	0	27	40	0	135	0
7:15 AM	0	1	4	4	0	42	3	9	0	0	17	12	0	21	55	1	169	0
7:30 AM	0	0	6	1	0	51	2	2	0	0	15	17	0	19	85	1	199	0
7:45 AM	0	1	2	2	0	60	2	11	0	1	22	18	0	20	87	0	226	729
8:00 AM	0	0	7	3	0	48	4	7	0	1	23	13	0	14	44	1	165	759
8:15 AM	0	3	2	7	0	59	1	2	0	3	23	35	0	15	60	1	211	801
8:30 AM	0	1	0	5	0	60	1	8	0	6	41	34	0	17	82	2	257	859
8:45 AM	0	2	2	3	0	58	1	4	0	1	22	19	0	16	69	0	197	830
Count Total	0	10	25	26	0	409	16	46	0	12	178	160	0	149	522	6	1,559	0
Peak Hour	0	5	11	17	0	227	8	28	0	11	109	100	0	66	273	4	859	0

Interval		Heavy	Vehicle	Totals				Bicycles	;			Pedestria	ns (Cross	ing Leg)	
Start	EB	WB	NB	SB	Total	EB	WB	NB	SB	Total	East	West	North	South	Total
7:00 AM	1	2	0	1	4	0	1	0	0	1	0	1	0	0	1
7:15 AM	0	1	1	2	4	0	0	0	0	0	0	0	0	0	0
7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0
8:00 AM	0	3	2	0	5	0	0	0	0	0	0	0	0	0	0
8:15 AM	1	0	2	1	4	0	0	0	0	0	0	0	0	0	0
8:30 AM	0	0	1	1	2	0	0	0	0	0	0	0	0	0	0
8:45 AM	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0
Count Total	2	7	7	5	21	0	1	0	0	1	0	1	0	0	1
Peak Hour	1	3	6	2	12	0	0	0	0	0	0	0	0	0	0

I WA-HALIR	Count Sum	mariae
II WO-IIOUI	Count Sun	ıı ı ıaı ı c ə

Mark Skaggs: (425) 250-0777

Interval		FISHE	ER LN			FISHE	ER LN			LONG	3 AVE		COLU	IMBIA	HEIGHT	S RD	45 min	Dalling
Start		Eastb	ound			Westl	bound			North	bound			South	bound		15-min Total	Rolling One Hour
Start	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	iotai	Offe Flour
4:00 PM	0	0	2	4	0	43	2	15	0	3	43	63	0	11	41	1	228	0
4:15 PM	0	2	4	1	0	40	5	15	0	3	64	66	0	11	40	0	251	0
4:30 PM	0	3	3	2	0	41	2	16	0	4	66	72	0	7	54	1	271	0
4:45 PM	0	1	5	2	0	40	5	15	0	3	55	61	0	5	38	0	230	980
5:00 PM	0	0	6	4	0	30	3	24	0	7	56	62	0	11	42	0	245	997
5:15 PM	0	1	7	4	0	30	1	17	0	7	60	67	0	7	39	0	240	986
5:30 PM	0	3	7	5	0	32	10	17	0	3	65	65	0	16	37	0	260	975
5:45 PM	0	0	4	6	0	39	7	28	0	3	47	72	0	16	39	0	261	1,006
Count Total	0	10	38	28	0	295	35	147	0	33	456	528	0	84	330	2	1,986	0
Peak Hour	0	4	24	19	0	131	21	86	0	20	228	266	0	50	157	0	1,006	0

Interval		Heavy	Vehicle	Totals				Bicycles	;			Pedestria	ans (Cross	ing Leg)	
Start	EB	WB	NB	SB	Total	EB	WB	NB	SB	Total	East	West	North	South	Total
4:00 PM	0	0	0	1	1	0	0	0	0	0	3	0	0	0	3
4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	6	6
5:00 PM	0	0	0	1	1	0	0	0	0	0	0	1	0	4	5
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	2	2
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Count Total	0	0	0	2	2	0	0	0	0	0	3	1	0	12	16
Peak Hour	0	0	0	1	1	0	0	0	0	0	0	1	0	6	7

Two-Hour	('Alint Sil	mmariae
i wo-i ioui	Count Su	IIIIIIai ies

Mark Skaggs: (425) 250-0777

Interval	SR 4 (OCEAN	BEACH	HWY)	SI	R 4 (CA	TLIN S	T)	WA	SHING	TON W	/AY	W	COW	LITZ WA	λY	45 min	Dalling
Start		Eastb	ound			Westl	bound			North	bound			South	nbound		15-min Total	Rolling One Hour
Start	UT	LT	TH	RT	υT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	iotai	One Hou
7:00 AM	0	54	50	0	0	17	35	0	0	1	42	13	0	0	68	55	335	0
7:15 AM	0	71	55	1	0	21	40	0	0	4	37	14	0	0	86	104	433	0
7:30 AM	0	78	76	0	0	48	48	0	0	2	54	16	0	0	150	151	623	0
7:45 AM	0	80	82	1	0	48	44	1	0	3	69	24	0	0	211	137	700	2,091
8:00 AM	0	88	53	2	0	30	50	1	0	5	72	20	0	1	125	114	561	2,317
8:15 AM	0	84	63	1	0	43	64	0	0	9	71	13	0	0	156	106	610	2,494
8:30 AM	0	62	54	5	0	39	75	0	0	7	51	26	0	0	207	104	630	2,501
8:45 AM	0	82	77	5	0	64	72	2	0	8	60	22	0	0	180	111	683	2,484
Count Total	0	599	510	15	0	310	428	4	0	39	456	148	0	1	1,183	882	4,575	0
Peak Hour	0	314	252	9	0	160	233	2	0	24	263	83	0	1	699	461	2,501	0

Interval		Heavy	Vehicle	Totals				Bicycles	i			Pedestria	ns (Cross	ing Leg)	
Start	EB	WB	NB	SB	Total	EB	WB	NB	SB	Total	East	West	North	South	Total
7:00 AM	2	1	1	0	4	0	0	2	0	2	0	0	0	0	0
7:15 AM	1	0	1	1	3	0	0	0	1	1	0	0	0	0	0
7:30 AM	0	2	0	3	5	0	0	0	0	0	0	2	0	1	3
7:45 AM	1	2	2	2	7	0	0	0	1	1	0	1	0	0	1
8:00 AM	2	0	3	4	9	1	0	0	0	1	0	1	0	0	1
8:15 AM	0	1	0	3	4	1	0	0	0	1	3	0	0	0	3
8:30 AM	3	1	0	2	6	0	0	0	1	1	0	2	0	0	2
8:45 AM	1	0	1	2	4	0	0	0	0	0	1	3	0	0	4
Count Total	10	7	8	17	42	2	0	2	3	7	4	9	0	1	14
Peak Hour	6	4	5	11	26	2	0	0	2	4	3	4	0	0	7

Two-Hour	Count Si	Immariae
I WO-I IOUI	Count St	allilliai icə

Mark Skaggs: (425) 250-0777

Interval	SR 4 (OCEAN	BEACH	HWY)	SI	R 4 (CA	TLIN S	T)	WA	SHING	STON W	ΑY	W	COWL	ITZ W	AY	45	Dalling
Interval Start		Eastb	ound			Westl	bound			North	bound			South	bound		15-min Total	Rolling One Hour
Otart	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	Total	One riou
4:00 PM	0	118	102	8	0	34	70	0	0	12	159	48	0	0	123	121	795	0
4:15 PM	0	122	85	7	0	35	73	0	0	2	168	43	0	0	136	116	787	0
4:30 PM	0	126	81	4	0	33	59	0	1	4	166	50	0	0	114	126	764	0
4:45 PM	0	101	91	2	0	47	64	0	0	6	171	65	0	0	139	145	831	3,177
5:00 PM	0	108	91	3	0	44	76	0	0	3	163	64	0	0	116	127	795	3,177
5:15 PM	0	97	92	8	0	48	81	0	0	8	131	55	0	0	125	128	773	3,163
5:30 PM	0	127	98	1	0	28	69	0	0	4	151	57	0	0	126	120	781	3,180
5:45 PM	0	120	91	9	0	32	77	1	0	7	107	46	0	0	105	118	713	3,062
Count Total	0	919	731	42	0	301	569	1	1	46	1,216	428	0	0	984	1,001	6,239	0
Peak Hour	0	433	372	14	0	167	290	0	0	21	616	241	0	0	506	520	3,180	0

Interval		Heavy	Vehicle	Totals				Bicycles	i			Pedestria	ns (Cross	ing Leg)	
Start	EB	WB	NB	SB	Total	EB	WB	NB	SB	Total	East	West	North	South	Total
4:00 PM	1	0	1	2	4	0	2	0	1	3	0	0	0	5	5
4:15 PM	0	0	0	1	1	0	1	1	0	2	0	1	0	0	1
4:30 PM	0	0	0	1	1	0	0	0	0	0	0	0	0	1	1
4:45 PM	0	0	0	1	1	0	0	0	0	0	0	3	0	0	3
5:00 PM	2	0	1	2	5	1	0	0	1	2	0	0	0	2	2
5:15 PM	0	0	0	1	1	0	0	0	0	0	0	2	0	3	5
5:30 PM	0	0	0	3	3	1	0	0	0	1	0	3	0	3	6
5:45 PM	0	0	0	0	0	0	0	0	1	1	0	0	0	1	1
Count Total	3	0	2	11	16	2	3	1	3	9	0	9	0	15	24
Peak Hour	2	0	1	7	10	2	0	0	1	3	0	8	0	8	16

Т	wo-	н	\sim 11	r C	` ^	ıın	+ 9	:	mi	m	ari	Δς
1	WU-	П	υu	ıv	,0	uu	ιc	u	ш	ш	aı ı	C 2

i wo-i ioai ot	Junit Ot	anninan	-											
Interval	OCEA	N BEACH	HWY	(CATLIN S	Т	WAS	HINGTON	WAY	CO	WLITZ W	AY N	15-min	Rolling
Start	I	Eastbound	t	\	Vestboun	d		Northbound	d	9	Southbour	nd	Total	One Hour
Otart	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT	Total	One nou
4:00 PM	123	97	3	36	69	1	6	141	53	0	123	110	762	
4:15 PM	119	88	6	36	70	2	10	153	55	0	131	121	791	
4:30 PM	121	84	3	39	77	0	5	124	31	0	113	149	746	
4:45 PM	117	74	5	37	62	2	7	161	48	0	109	127	749	3,048
5:00 PM	128	90	4	25	76	2	12	176	60	0	131	128	832	3,118
5:15 PM	127	91	5	37	78	1	10	148	46	0	128	141	812	3,139
5:30 PM	110	93	3	35	71	1	9	154	39	0	115	150	780	3,173
5:45 PM	106	85	3	33	56	3	6	121	34	0	89	122	658	3,082
Count Total	951	702	32	278	559	12	65	1,178	366	0	939	1,048	6,130	
Peak Hr	482	348	17	134	287	6	38	639	193	0	483	546	3,173	

Interval		Heavy	Vehicle	Totals	;		ı	3icycle:	s			Pedestria	ıns (Crossi	ng Leg)	
Start	EB	WB	NB	SB	Total	EB	WB	NB	SB	Total	East	West	North	South	Total
4:00 PM	2	1	3	3	9	0	0	0	0	0	0	0	0	0	0
4:15 PM	4	3	1	1	9	0	0	0	0	0	4	5	0	4	13
4:30 PM	3	0	1	4	8	0	0	0	0	0	0	1	0	0	1
4:45 PM	5	0	2	4	11	0	0	0	0	0	0	2	0	0	2
5:00 PM	3	2	4	0	9	0	0	0	0	0	0	2	0	0	2
5:15 PM	2	1	4	4	11	0	0	0	0	0	2	6	0	0	8
5:30 PM	2	0	1	2	5	0	0	0	0	0	1	0	0	0	1
5:45 PM	2	1	1	3	7	0	0	0	0	0	0	0	0	3	3
Count Total	23	8	17	21	69	0	0	0	0	0	7	16	0	7	30
Peak Hr	12	3	11	10	36	0	0	0	0	0	3	10	0	0	13

Two-Hour	Caunt	?mmor	iمم
I WO-HOUI	Count	Julillia i	162

i wo-iloui ot	Junit O	ammand	,3											
Interval	ALL	EN ST BRI	DGE	ALLE	EN ST BR	IDGE	1	ST AVE S	W	19	ST AVE S	W	4E min	Delling
Interval Start		Eastbound		\	Nestboun	d		Northboun	d	9	Southboun	d	15-min Total	Rolling One Hour
Otart	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT	Total	One nou
4:00 PM	20	131	6	62	133	35	1	102	115	26	65	15	711	
4:15 PM	29	169	2	68	127	34	0	106	102	27	50	13	727	
4:30 PM	18	106	3	76	110	40	0	93	144	20	60	19	689	
4:45 PM	21	129	2	60	110	55	1	102	123	32	64	12	711	2,838
5:00 PM	30	123	5	74	115	31	1	114	160	38	54	6	751	2,878
5:15 PM	48	142	2	78	140	37	0	107	124	25	56	12	771	2,922
5:30 PM	27	126	5	52	103	29	0	84	86	29	48	10	599	2,832
5:45 PM	14	129	4	69	86	32	0	91	117	34	41	12	629	2,750
Count Total	207	1,055	29	539	924	293	3	799	971	231	438	99	5,588	
Peak Hr	117	500	12	288	475	163	2	416	551	115	234	49	2,922	

Interval		Heavy	Vehicle	Totals	3		I	Bicycle:	s			Pedestria	ıns (Crossi	ing Leg)	
Start	EB	WB	NB	SB	Total	EB	WB	NB	SB	Total	East	West	North	South	Total
4:00 PM	2	1	8	4	15	0	0	0	0	0	0	0	1	1	2
4:15 PM	4	2	2	4	12	0	0	0	0	0	0	2	0	1	3
4:30 PM	2	2	4	4	12	0	0	0	0	0	0	1	2	3	6
4:45 PM	4	4	2	4	14	0	0	0	0	0	0	0	0	1	1
5:00 PM	2	3	5	1	11	0	0	0	0	0	0	1	2	0	3
5:15 PM	1	1	2	1	5	0	0	0	0	0	0	0	1	3	4
5:30 PM	1	2	4	1	8	0	0	0	0	0	0	2	1	2	5
5:45 PM	3	1	1	0	5	0	0	0	0	0	0	0	1	1	2
Count Total	19	16	28	19	82	0	0	0	0	0	0	6	8	12	26
Peak Hr	9	10	13	10	42	0	0	0	0	0	0	2	5	7	14

Location: ALLEN ST E/O 1ST AVE NW

Date Range: 5/2/2017 - 5/8/2017

Site Code: 03

	Т	uesda	У	W	ednesc	lay	1	Thursda	ay		Friday	,		Saturda	ıy		Sunday	/		Monday	/			
	5	/2/2017	7	;	5/3/201	7		5/4/201	7		5/5/201	7		5/6/201	7		5/7/201	7		5/8/201	7	Mid-V	Veek A	/erage
Time	EB	WB	Total	EB	WB	Total	EB	WB	Total	EB	WB	Total	EB	WB	Total	EB	WB	Total	EB	WB	Total	EB	WB	Total
12:00 AM	63	53	116	63	68	131	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	63	61	124
1:00 AM	44	49	93	48	50	98	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	46	50	96
2:00 AM	41	60	101	43	53	96	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	42	57	99
3:00 AM	47	47	94	60	49	109	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	54	48	102
4:00 AM	104	99	203	101	97	198	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	103	98	201
5:00 AM	203	231	434	245	246	491	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	224	239	463
6:00 AM	343	396	739	352	367	719	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	348	382	729
7:00 AM	607	704	1,311	607	706	1,313	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	607	705	1,312
8:00 AM	637	715	1,352	653	764	1,417	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	645	740	1,385
9:00 AM	656	677	1,333	707	703	1,410	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	682	690	1,372
10:00 AM	775	760	1,535	755	667	1,422	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	765	714	1,479
11:00 AM	959	742	1,701	894	830	1,724	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	927	786	1,713
12:00 PM	957	848	1,805	1,016	893	1,909	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	987	871	1,857
1:00 PM	925	864	1,789	1,000	939	1,939	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	963	902	1,864
2:00 PM	1,041	845	1,886	1,040	879	1,919	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1,041	862	1,903
3:00 PM	1,084	854	1,938	1,107	855	1,962	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1,096	855	1,950
4:00 PM	1,199	903	2,102	1,149	857	2,006	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1,174	880	2,054
5:00 PM	1,182	903	2,085	1,101	864	1,965	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1,142	884	2,025
6:00 PM	772	650	1,422	792	673	1,465	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	782	662	1,444
7:00 PM	636	532	1,168	683	555	1,238	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	660	544	1,203
8:00 PM	423	376	799	552	493	1,045	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	488	435	922
9:00 PM	301	255	556	383	343	726	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	342	299	641
10:00 PM	180	153	333	223	196	419	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	202	175	376
11:00 PM	131	88	219	142	81	223	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	137	85	221
Total	13,310	11,804	25,114	13,716	12,228	25,944	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	13,513	12,016	25,529
Percent	53%	47%	-	53%	47%	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	53%	47%	-

Location: W COWLITZ SAY BTWN N PACIFIC AVE & LONG AVE

Date Range: 5/2/2017 - 5/8/2017

Site Code: 02

		Tuesda	У	W	ednesd	ay	1	Thursda	ay		Friday			Saturda	ıy		Sunday	1		Monday	1			
		5/2/2017	7		5/3/2017	7		5/4/201	7		5/5/201	7		5/6/201	7		5/7/2017	7		5/8/2017	7	Mid-V	Neek Av	/erage
Time	EB	WB	Total	EB	WB	Total	EB	WB	Total	EB	WB	Total	EB	WB	Total	EB	WB	Total	EB	WB	Total	EB	WB	Total
12:00 AM	58	66	124	61	57	118	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	60	62	121
1:00 AM	40	47	87	43	38	81	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	42	43	84
2:00 AM	22	44	66	28	35	63	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	25	40	65
3:00 AM	32	42	74	27	50	77	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	30	46	76
4:00 AM	56	86	142	45	90	135	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	51	88	139
5:00 AM	114	160	274	121	176	297	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	118	168	286
6:00 AM	230	341	571	219	324	543	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	225	333	557
7:00 AM	492	683	1,175	480	680	1,160	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	486	682	1,168
8:00 AM	446	793	1,239	491	758	1,249	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	469	776	1,244
9:00 AM	414	589	1,003	428	636	1,064	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	421	613	1,034
10:00 AM	481	601	1,082	494	653	1,147	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	488	627	1,115
11:00 AM	543	648	1,191	599	718	1,317	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	571	683	1,254
12:00 PM	621	742	1,363	736	800	1,536	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	679	771	1,450
1:00 PM	660	704	1,364	714	864	1,578	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	687	784	1,471
2:00 PM	684	810	1,494	725	806	1,531	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	705	808	1,513
3:00 PM	763	870	1,633	764	804	1,568	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	764	837	1,601
4:00 PM	793	876	1,669	881	901	1,782	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	837	889	1,726
5:00 PM	967	804	1,771	845	831	1,676	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	906	818	1,724
6:00 PM	637	572	1,209	641	668	1,309	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	639	620	1,259
7:00 PM	561	470	1,031	586	504	1,090	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	574	487	1,061
8:00 PM	439	372	811	516	496	1,012	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	478	434	912
9:00 PM	234	247	481	366	357	723	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	300	302	602
10:00 PM	172	162	334	199	195	394	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	186	179	364
11:00 PM	116	92	208	119	102	221	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	118	97	215
Total	9,575	10,821	20,396	10,128	11,543	21,671	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	9,852	11,182	21,034
Percent	47%	53%	-	47%	53%	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	47%	53%	-

^{1.} Mid-week average includes data between Tuesday and Thursday.

WSDOT Permanent Traffic Recorder - S819: On SR 411 at milepost 7.97 A: S/O SANDY BEND ROAD - LEXINGTON

			January 2010 - Aug	ust 2020	
AvgD		SingleUnitTruckPct	DoubleUnitTruckPct	TripleUnitTruckPct	VehicleClassificationType
5	1601	7.13	0.5	0	Axle Spacing Classification
1	1636				
5	1749	7.03	0.69		Axle Spacing Classification
1	1779	7.42	1.91		Axle Spacing Classification
1	1794	6.8	0.67		Axle Spacing Classification
L	1824	7.35	1.59		Axle Spacing Classification
2	1851	7.68	0.75		Axle Spacing Classification
2	1891	7.52	2.1		Axle Spacing Classification
,	1852	7.46	0.71		Axle Spacing Classification
3	1884	7.34	2.04		Axle Spacing Classification
	1872	7.52	0.96		Axle Spacing Classification
7	1918	7.47	2.35		Axle Spacing Classification
5	1900	6.91	1.1		Axle Spacing Classification
2	1979	7.33	2.09		Axle Spacing Classification
	1863	7.41	1.03		Axle Spacing Classification
,	1925	7.7	1.99		Axle Spacing Classification
	1850	7.59	0.91		Axle Spacing Classification
	1887	7.92	2.27		Axle Spacing Classification
,	1792	7.25	0.73		Axle Spacing Classification
	1830	7.71	1.98		Axle Spacing Classification
2	1557	7.46	0.58		Axle Spacing Classification
	1579	8.05	1.33		Axle Spacing Classification
	1612	7.27	0.43		Axle Spacing Classification
)	1644	7.92	1.09		Axle Spacing Classification
3 3	1488	7.71	0.55		Axle Spacing Classification
2	1508	8.29 7.95	1.82 0.46		Axle Spacing Classification
!	1517				Axle Spacing Classification
	1538 1593	8.3 7.18	1.9		Axle Spacing Classification
2	1610	7.18	1.55		Axle Spacing Classification Axle Spacing Classification
<u>.</u>	1669	7.74	1.33		Axle Spacing Classification
3	1679	8.66	2.14		Axle Spacing Classification
3	1751	7.25	0.81		
,	1780	7.25	1.98		Axle Spacing Classification Axle Spacing Classification
)	1809	7.18	0.88		Axle Spacing Classification
3	1840	7.18	1.95		Axle Spacing Classification
)	1770	6.64	1.02		Axle Spacing Classification
ı	1793	7.45	1.89		Axle Spacing Classification
1	1795	6.61	1.17		Axle Spacing Classification
,	1812	7.43	1.17		Axle Spacing Classification
2	1779	6.87	0.95		Axle Spacing Classification
,	1820	7.42	1.97		Axle Spacing Classification
ò	1692	6.88	0.71		Axle Spacing Classification
)	1722	7.76	1.63		Axle Spacing Classification
}	1549	7.70	0.58		Axle Spacing Classification
, 5	1566	7.98	1.27		Axle Spacing Classification
}	1550	6.76	0.51		Axle Spacing Classification
	1573	7.5	1.27		Axle Spacing Classification
3	1413	7.13	0.5		Axle Spacing Classification
)	1420	7.94	1.28		Axle Spacing Classification
1	1541	6.75	0.71		Ayle Spacing Classification

Company							J SANDT BEND							2010 - August 202	
Surphessed 200 1 179 172 178 179	TravelDirection		nth Avg		Monday AvgTi										
Septement 200 2 2325 1798 1794 2425 2428 1425 1798 1797 707 0.99 C. Alex Sourier, Control Country	Northbound	2010	1	1167	1676	1712	1747	1778	1690	1440	1746	1601	7.13	0.5	O Axle Spacing Classification
Septement 200 2 2325 1798 1794 2425 2428 1425 1798 1797 707 0.99 C. Alex Sourier, Control Country	Southhound	2010	1	1179	1723	1788	1798	1797	1715	1455	1794	1636			<u> </u>
Southeaned 200 2 137 180													7.02	0.00	O Aula Canaina Classification
September 200 3 3139 3848 395 395 395 397 377 377 397 397 378 139 139 398															<u> </u>
Sumbourd 2008 3 13-07 1897 1973 1975 1995 2004 1897 1973 1989 2004 1897 1973 1999 1995 2004 1897 1997 1997 1997 1997 1997 1997 1997															
Sectionary 2020 4 353 388 399 398 397 298 397 209 398 397 209 200 201	Northbound	2010	3	1319	1844	1850	1910	1891	1977	1770	1884	1794	6.8	0.67	O Axle Spacing Classification
Sectionary 2020 4 353 388 399 398 397 298 397 209 398 397 209 200 201	Southbound	2010	3	1347	1882	1873	1925	1935	2001	1807	1911	1824	7.35	1.59	0.11 Axle Spacing Classification
September 2010 4 171 1920 1998 2008 2011 2007 1790 2012 1915 7.52 7.54 0.71 0.006 soore (classification of the control of th			1												
Semblescord 2010 5															
Surfleword 200 5 146 195 1966 1998 1999 277 1966 1998 1894 7,34 2,24 0.11 And Source Carefully (Controlled) 1995 1995 1995 1995 1995 1995 1995 199															
Southboard 200 6 1436 590 596 596 596 596 597 2006 188 593 1972 7.72 2.55 0.056 0.65 And Spanny Clementary Control 1.05 And Spanny Clementary Clement	Northbound	2010	5	1434	1831	1923	1947	1970	2081	1777	1947	1852	7.46	0.71	0 Axle Spacing Classification
Southboard 200 6 1436 590 596 596 596 596 597 2006 188 593 1972 7.72 2.55 0.056 0.65 And Spanny Clementary Control 1.05 And Spanny Clementary Clement	Southbound	2010	5	1446	1852	1986	1988	1989	2122	1806	1988	1884	7.34	2.04	0.11 Axle Spacing Classification
Southbound 2010 6 1432 1965 2070 2030 2030 2030 2030 1979 2077 1978 7.47 2.55 0.21 And Sparring Cleaning Americans of the Computer of the Comp			6	1426		1966						1872	7 52		
Number 1990 7															
Semble															
Numbers 2000 8 1451 1870 1996 2031 2032 2037 1710 1997 1868 7.41 1.08 1.08 4.08 4.08 4.08 1.08 1.08 1.08 4.08 1.08	Northbound	2010	7	1458	1831	1992	2040	2043	2129	1809	2025	1900	6.91	1.1	Axle Spacing Classification
Southbound 2000 8 1523 1957 1979 2070 2078 2119 1765 2035 1957 7.7 1.99 0.2.1 Assistance questions Southbound 2000 9 1423 1230 124	Southbound	2010	7	1555	1864	2051	2133	2114	2216	1920	2099	1979	7.33	2.09	0.2 Axle Spacing Classification
Southbound 2000 8 1523 1957 1979 2070 2078 2119 1765 2035 1957 7.7 1.99 0.2.1 Assistance questions Southbound 2000 9 1423 1230 124	Northhound	2010	8	1451	1870	1950	2023	2002	2037	1710	1992	1863	7 41	1.03	0.05 Ayle Spacing Classification
Southbound 2018 9 1413 1790 1943 1968 1968 2022 1842 1957 1850 7.59 0.91 0.0 Ast Sparke (EastFace Southbound 2018 10 1407 1418 1961 1963 1968 2022 1842 1957 1850 7.59 0.91 0.0 Ast Sparke (EastFace Southbound 2018 10 1407 1418 1961 1963 1968 2000 1479 1415 1970 2.5															
Southboard 2019 9 1475 1390 1963 2009 2034 2113 1390 1391 1392 1392 2.27 0.21 Ans Sparking Classification 1970 101															
Northbound 2010 10 1307 1815 1991 1993 1990 2000 1679 1915 1792 7.75 0.78 0.08 And Spanning Classification Northbound 2010 11 1196 1244 1589 1568 1682 1622 1756 1484 1522 1557 7.46 0.58 0.48 Spanning Classification Northbound 2010 11 1198 1498 1589 1568 1579 1779						13.13									
Seathbound 2010 10 1307 187 1841 1972 1929 2061 1711 1947 1880 7.71 1.98 0.17 And Spanning Classifical Southbound 2010 13 1166 1648 1889 1652 1701 1565 1735 1462 1577 1580 1577 2.044 0.74 And Spanning Classifical Southbound 2010 13 1166 1640 1524 1701 1701 1555 1735 1462 1567 1737 0.644 0.74 And Spanning Classifical And Spanning Classifical Spanning Classifica	Southbound	2010	9	1425	1830	1963	2009	2024	2113	1843	1999	1887	7.92	2.27	0.21 Axle Spacing Classification
Seathbound 2010 10 1307 187 1841 1972 1929 2061 1711 1947 1880 7.71 1.98 0.17 And Spanning Classifical Southbound 2010 13 1166 1648 1889 1652 1701 1565 1735 1462 1577 1580 1577 2.044 0.74 And Spanning Classifical Southbound 2010 13 1166 1640 1524 1701 1701 1555 1735 1462 1567 1737 0.644 0.74 And Spanning Classifical And Spanning Classifical Spanning Classifica	Northbound	2010	10	1307	1815	1901	1953	1890	2000	1679	1915	1792	7.25	0.73	0.06 Axle Spacing Classification
Numbound 2010															
Septembound 2010 11 1166 1360 1624 1701 1598 1785 1786 1795 1615 1779 277 0.43 0.485 Septing (EastField Southbound 2010 12 1226 1715 1775 1775 1776 1786 1781 1781 1781 1780 1644 7.92 1.09 0.12 Aut Septing (EastField Southbound 2011 1 1036 1142 1383 1565 1071 1781 1715 1722 1311 1638 1486 7.71 1035 1046															
Northbound 2010 12 12:26 1994 1707 1736 1736 1732 1747 14:56 1721 16:12 7:27 0.43 0. Ake Specing Classifical Northbound 2011 1 10:05 14:12 15:83 16:57 17:58 17:51 1															
Southbound 2010 12 1246 1715 1757 1765 1758 175	Southbound	2010	11	1166	1660	1624	1701	1658	1785	1462	1661	1579	8.05	1.33	0.13 Axle Spacing Classification
Southbound 2010 12 1246 1715 1757 1765 1758 175	Northbound	2010	12	1226	1694	1707	1733	1722	1747	1456	1721	1612	7.27	0.43	Axle Spacing Classification
Northbound 2011 1 1936 1412 1583 1657 1674 1722 1331 1638 1488 7.71 1.055 0.34kt Spaning Castrification 2011 2 1111 1640 1579 1663 1584 1572 1373 1562 1517 755 0.46 0.34kt Spaning Castrification 2011 2 1111 1640 1579 1663 1584 1572 1373 1564 1517 755 0.46 0.34kt Spaning Castrification 2011 2 1111 1672 1742 1569 1564 1564 1360 1681 1538 8.3 1.9 0.07 Aukt Spaning Castrification 2011 3 1172 1643 1599 1886 1699 1814 1541 1661 1591 7.18 0.02 0.05 Aukt Spaning Castrification 2011 3 1174 1643 1599 1886 1699 1814 1541 1661 1591 7.74 1.05 0.02 0.05 Aukt Spaning Castrification 2011 3 1174 1643 1599 1886 1699 1814 1541 1661 1591 774 1.05 0.02 0.05 Aukt Spaning Castrification 2011 3 1174 1643 1599 1785 1699 1814 1541 1661 1591 774 1.05 0.02 0.05 Aukt Spaning Castrification 2011 3 1174 1643 1599 1795															, ,
Southbound 2011 1 1032 1438 1511 1599 1663 1594 1779 1782 1318 1663 1508 6.29 1.82 0.13 Axie Spacing Classifica Northbound 2011 2 1111 1670 1772 1663 1584 1577 755 0.46 0 Axie Spacing Classifica Northbound 2011 3 1172 1643 1599 1666 1604 1564 1380 1681 1538 8.3 1.9 0.07 Axie Spacing Classifica Northbound 2011 3 1172 1643 1599 1666 1699 1814 1511 1610 1733 1670 0.07 Axie Spacing Classifica Northbound 2011 3 1174 1672 1516 1733 1696 1816 1542 1610 7.74 1.55 0.12 Axie Spacing Classifica Northbound 2011 4 1305 1654 1737 1752 1746 1855 1656 1745 1669 7.71 1.2 0.13 Axie Spacing Classifica Northbound 2011 4 1305 1654 1737 1772 1772 1772 1772 1772 1772 1779 8.66 2.14 0.12 Axie Spacing Classifica Northbound 2011 5 1359 1687 1873 1856 1851 1973 1871 1699 1733 1879 8.66 2.14 0.12 Axie Spacing Classifica Northbound 2011 5 1359 1867 1873 1856 1851 1973 1871 1699 1733 1879 8.66 2.14 0.12 Axie Spacing Classifica Northbound 2011 5 1359 1879 1879 1879 1879 1879 1879 1879 187															
Southbound 2011 2															
Southbound 2011 2 1111 1672 1742 1696 1604 1564 1380 1681 1518 8.3 1.9 0.07 And Spacing (Lassifica Southbound 2011 3 1174 1572 1616 1599 1886 1816 1542 1682 1610 7.74 1.55 0.12 And Spacing (Lassifica Southbound 2011 4 1398 1689 1755 1772 1746 1851 1656 1745 1669 7.71 1.2 0.13 And Spacing (Lassifica Southbound 2011 4 1398 1689 1755 1772 1772 1772 1871 1619 1753 1679 8.66 2.14 0.12 And Spacing (Lassifica Northbound 2011 5 1399 1667 1875 1875 1885 1891 1973 1661 1873 1755 0.51 0.00 And Spacing (Lassifica Northbound 2011 5 1399 1667 1875 1970 1903 1907 1640 1917 1780 7.68 1.58 0.14 And Spacing (Lassifica Northbound 2011 5 1369 1758 1979 1970 1903 1907 1640 1917 1780 7.68 1.58 0.14 And Spacing (Lassifica Northbound 2011 5 1369 1758 1979 1970 1903 1907 1640 1917 1780 7.68 1.58 0.00 And Spacing (Lassifica Northbound 2011 7 1386 1874 1875 1991 1893 1907 1640 1907 1780 7.68 1.58 1.68															
Northbound 2011 3	Northbound	2011	2	1111	1640	1679	1663	1584	1572	1373	1642	1517	7.95	0.46	O Axle Spacing Classification
Northbound 2011 3	Southbound	2011	2	1111	1672	1742	1696	1604	1564	1380	1681	1538	8.3	1.9	0.07 Axle Spacing Classification
Southbound 2011 3 1194 1672 1616 1733 1696 1816 1542 1669 7.74 1.55 0.12 Med Spacing Classifica Northbound 2011 4 1395 1658 1737 1752 1732 1871 1639 1735 1775 8.66 2.14 0.12 Med Spacing Classifica Southbound 2011 5 1399 1667 1873 1886 1891 1973 1641 1873 1751 7.75 0.81 0.0 Alex Spacing Classifica Southbound 2011 5 1399 1667 1873 1890 1990 1990 1990 1990 1990 1990 7.88 1990 7.88 198 0.11 Med Spacing Classifica Southbound 2011 6 1484 1789 1815 1824 1882 2066 1800 1890 7.89 1890 7.88 198 0.11 Med Spacing Classifica Southbound 2011 6 1484 1789 1815 1824 1816 1864 1913 2110 1800 7.89 1890 7.89 1990 7.89															
Northbound 2011 4 1305 1564 1377 1752 1746 1851 1636 1745 1669 7.71 1.2 0.13 Axie Spacing (Lassifica Southbound 2011 5 1339 1567 1373 1385 1381 1973 1641 1873 1751 7.25 0.81 0.0 Axie Spacing (Lassifica Southbound 2011 5 1346 1378 1389 1380 1380 1381 1973 1641 1873 1751 7.25 0.81 0.0 Axie Spacing (Lassifica Southbound 2011 6 1484 1789 1815 1824 1882 2066 1880 1840 1840 7.75 1.8															
Southbound 2011 4 1298 1689 1755 1772 1732 1871 1639 1753 1679 8.66 2.14 0.12 And Spacing Classifica Northbound 2011 5 1359 1667 1873 1856 1891 1912 1913 1641 1873 1751 7.25 0.81 0.48 Spacing Classifica Northbound 2011 5 1346 1788 1319 1920 1990 1993 1987 1640 1917 1780 7.68 1.98 0.11 And Spacing Classifica Northbound 2011 6 1848 1789 1815 1824 1882 2026 1890 1840 1809 7.18 0.88 0.48 Spacing Classifica Northbound 2011 7 1398 1674 1817 1901 1802 1878 1870 1770 6.64 1.02 0.48 Spacing Classifica Northbound 2011 7 1341 1745 1843 1926 1882 2027 1688 1884 1793 7.45 1.89 0.11 And Spacing Classifica Northbound 2011 8 1419 1800 1846 1896 1874 1896 1747 1877 1795 6.61 1.17 0.48 Spacing Classifica Northbound 2011 8 1419 1800 1846 1896 1884 1896 1747 1872 1779 6.64 1.17 0.48 Spacing Classifica Northbound 2011 8 1466 1846 1876 1898 1886 1979 1735 1887 1812 7.43 1.98 0.11 And Spacing Classifica Northbound 2011 9 1399 1692 1843 1896 1907 2013 1704 1882 1779 6.67 0.95 0.48 Spacing Classifica Northbound 2011 9 1399 1692 1848 1896 1907 2013 1704 1882 1779 6.67 0.95 0.48 Spacing Classifica Northbound 2011 0 1274 1793 1812 1800 1819 1877 1976 1810 1772 7.76 1.63 0.12 And Spacing Classifica Northbound 2011 0 1274 1793 1812 1800 1819 1857 1970 1810 1772 7.76 1.63 0.12 And Spacing Classifica Northbound 2011 10 1274 1793 1812 1800 1819 1877 1971 1706 1866 1796 7.98 1.77 0.13 And Spacing Classifica Northbound 2011 11 115 1683 1722 1773 1623 1677 1871 1776 1686 1796 1798 1777 0.05 And Spacing Classifica Northbound 2011 12 12 12 12 12 12															
Southbound	Northbound	2011	4	1305	1654	1737	1752	1746	1851	1636	1745	1669	7.71	1.2	0.18 Axle Spacing Classification
Southbound	Southbound	2011	4	1298	1689	1755	1772	1732	1871	1639	1753	1679	8.66	2.14	0.12 Axle Spacing Classification
Southbound 2011 5		2011	5	1359	1667	1873	1856	1891	1973	1641	1873	1751	7 25	0.81	
Northbound 2011 6															<u> </u>
Southbound 2011 6 1515 1821 1856 1864 1913 2110 1802 1878 1840 7.55 1.95 0.11 AMS Spacing Classifica Northbound 2011 7 1341 1745 1843 1976 1882 2027 1688 1870 1770 6.64 1.02 0. AMS Spacing Classifica Northbound 2011 8 1419 1800 1846 1886 1874 1986 1747 1872 1795 6.61 1.17 0. AMS Spacing Classifica Northbound 2011 8 1419 1800 1846 1886 1874 1986 1747 1872 1795 6.61 1.17 0. AMS Spacing Classifica Northbound 2011 8 1466 1846 1846 1846 1848 1886 1879 1735 1887 1812 7.43 1.98 0.11 AMS Spacing Classifica Northbound 2011 9 1399 1692 1842 1898 1986 1979 1735 1887 1812 7.43 1.98 0.11 AMS Spacing Classifica Northbound 2011 9 1398 1744 1888 1927 1965 2064 1741 1927 1820 7.42 1.97 0.05 AMS Spacing Classifica Northbound 2011 10 1229 1788 1774 1787 1766 1805 1864 1776 1892 6.88 0.71 0. AMS Spacing Classifica Northbound 2011 10 1274 1793 1812 1800 1819 1857 1702 1810 1722 7.76 1.63 0.12 AMS Spacing Classifica Northbound 2011 11 1161 1628 1692 1697 1601 1686 1379 1663 1549 7															
Northbound 2011 7 1398 1674 1817 1901 1893 2021 1685 1870 1770 6.64 1.02 0.0 Ade Spacing Classifica Northbound 2011 8 1449 1800 1846 1876 1886 1274 1986 1747 1872 1795 6.61 1.17 0.0 Ade Spacing Classifica Northbound 2011 8 1446 1846 1846 1876 1888 1886 1979 1725 1887 1812 7.43 1.19 0.11 Ade Spacing Classifica Northbound 2011 9 1399 1092 1843 1896 1977 2013 1704 1882 1779 6.87 0.95 0.0 Ade Spacing Classifica Southbound 2011 9 1398 1744 1888 1896 1977 2013 1704 1882 1779 6.87 0.95 0.0 Ade Spacing Classifica Northbound 2011 9 1398 1744 1787 1766 1805 1664 1776 1692 6.88 0.71 0.055 Ade Spacing Classifica Northbound 2011 10 1229 1778 1812 1800 1819 1857 1702 1810 1722 7.76 1.63 0.12 Ade Spacing Classifica Northbound 2011 10 1274 1793 1812 1800 1819 1857 1702 1810 1722 7.76 1.63 0.12 Ade Spacing Classifica Northbound 2011 11 1115 1683 1722 1773 1623 1677 1371 1706 1566 7.98 1.27 0.13 Ade Spacing Classifica Northbound 2011 11 1115 1683 1722 1773 1623 1677 1371 1706 1566 7.98 1.27 0.13 Ade Spacing Classifica Northbound 2011 12 1205 1488 1611 1625 1648 1779 1497 1628 1550 6.76 0.51 0.048 Spacing Classifica Northbound 2011 12 1215 1546 1661 1565 1665 1778 1488 1661 1573 7.5 1.27 0.06 Ade Spacing Classifica Northbound 2012 1 1006 1367 1544 1409 1578 1645 1389 1510 1420 7.94 1.28 0.07 Ade Spacing Classifica Northbound 2012 1 1006 1367 1544 1409 1578 1645 1389 1510 1420 7.94 1.28 0.07 Ade Spacing Classifica Northbound 2012 2 1163 1596 1661 1680 1685 1778 1488 1413 7.13 0.5 0.048 Spacing Classifica Northbound 2012 2 1163 1596 1661 1675 1764 1393 1719 1790 1716 0.76 0.76 0.77 0.	Northbound														
Southbound 2011 7 1398 1674 1817 1901 1893 2021 1685 1870 1770 6.64 1.02 0.0 Aske Spaning Classifica Southbound 2011 8 1419 1800 1846 1896 1874 1986 1747 1872 1795 6.61 1.17 0.0 Aske Spaning Classifica Southbound 2011 8 1446 1846 1876 1898 1886 1979 1735 1887 1812 7.43 1.98 0.11 Aske Spaning Classifica Northbound 2011 9 1399 1692 1848 1896 1907 2013 1704 1882 1779 6.87 0.95 0.0 Aske Spaning Classifica Northbound 2011 9 1399 1592 1848 1896 1907 2013 1704 1882 1779 6.87 0.95 0.0 Aske Spaning Classifica Northbound 2011 10 1290 1758 1774 1787 1766 1805 1664 1776 1692 6.88 0.71 0.05 Aske Spaning Classifica Southbound 2011 10 1290 1758 1774 1787 1766 1805 1664 1776 1692 6.88 0.71 0.05 Aske Spaning Classifica Southbound 2011 10 1274 1793 1812 1800 1819 1857 1702 1810 1722 7.76 1.63 0.12 Aske Spaning Classifica Southbound 2011 11 1161 1628 1692 1697 1601 1686 1379 1663 1549 7 0.58 0.0 Aske Spaning Classifica Southbound 2011 11 1115 1683 1722 1773 1623 1677 1371 1706 1566 7.98 1.27 0.13 Aske Spaning Classifica Southbound 2011 12 1205 1488 1611 1625 1648 1779 1497 1628 1550 6.76 0.51 0.0 Aske Spaning Classifica Southbound 2011 12 1215 1546 1661 1656 1665 1778 1488 1661 1573 7.5 1.27 0.0 6 Aske Spaning Classifica Southbound 2012 1 1006 1367 1544 1409 1578 1448 1661 1573 7.5 1.27 0.0 6 Aske Spaning Classifica Southbound 2012 2 1163 1596 1681 1689 1446 1789 1488 1661 1573 7.5 1.17 0.0 6 Aske Spaning Classifica Southbound 2012 2 1163 1596 1681 1689 1446 1789 1488 1661 1573 7.5 1.17 0.0 6 Aske Spaning Classifica Southbound 2012 3 1282 1500 1665 1685 1778 1489 1498 1601 1574 1750 1774 18	Southbound	2011	6	1515	1821	1856	1864	1913	2110	1802	1878	1840	7.55	1.95	0.11 Axle Spacing Classification
Southbound	Northbound	2011	7	1398	1674	1817	1901	1893	2021	1685	1870	1770	6.64	1.02	
Northbound 2011 8 1419 1800 1846 1896 1874 1986 1747 1872 1795 6.6.1 1.17 OAME Spacing Classifica Northbound 2011 9 1399 1692 1843 1896 1907 2013 1704 1882 1779 6.87 0.95 OAME Spacing Classifica Northbound 2011 9 1399 1754 1888 1397 1965 2064 1741 1927 1820 7.42 1.97 0.68 2.07 0.05 OAME Spacing Classifica Northbound 2011 10 1290 1758 1774 1787 1766 1805 1664 1776 1692 6.88 0.71 0.75 O.65															
Southbound 2011 8															
Northbound 2011 9 1399 1692 1843 1896 1907 2013 1704 1882 1779 6.87 0.95 0.5 Ale Spacing Classifica Southbound 2011 9 1398 1754 1888 1927 1965 2064 1741 1927 1820 7.42 1.97 0.05 Ale Spacing Classifica Northbound 2011 10 1290 1758 1774 1787 1766 1805 1664 1776 1692 6.88 0.71 0.5 Ale Spacing Classifica Southbound 2011 10 1274 1793 1812 1800 1819 1857 1702 1810 1722 7.76 1.63 0.12 Ale Spacing Classifica Northbound 2011 11 1161 1628 1692 1697 1601 1668 1379 1663 1549 7 0.65 0.46 Ale Spacing Classifica Southbound 2011 11 1115 1683 1722 1773 1623 1677 1371 1706 1566 7.98 1.27 0.13 Ale Spacing Classifica Northbound 2011 12 1205 1488 1611 1625 1648 1779 1497 1628 1550 6.76 0.51 0.54 Ale Spacing Classifica Southbound 2011 12 1215 1546 1661 1656 1665 1665 1778 1488 1661 1573 7.5 1.27 0.06 Ale Spacing Classifica Southbound 2011 12 1215 1546 1661 1656 1665 1665 1778 1488 1661 1573 7.5 1.27 0.06 Ale Spacing Classifica Northbound 2012 1 1006 1367 1544 1409 1578 1645 1369 1510 1420 7.94 1.28 0.07 Ale Spacing Classifica Northbound 2012 1 1006 1367 1544 1409 1578 1645 1369 1510 1420 7.94 1.28 0.07 Ale Spacing Classifica Northbound 2012 2 1177 1568 1671 1620 1547 1757 1449 1613 1541 6.75 0.71 0.74 Ale Spacing Classifica Northbound 2012 2 1163 1596 1681 1689 1671 1704 1804 1499 1671 1600 6.98 0.62 0.84 Spacing Classifica Northbound 2012 3 1283 1600 1639 1671 1704 1804 1499 1671 1600 6.98 0.62 0.84 Spacing Classifica Northbound 2012 4 1406 1750 1812 1765 1764 1933 1779 1780 1736 7.42 1.86 0.17 Ale Spacing Classifica Northbound 2012 4 1406 1750 1812 1765 1685 1685 1685 1685 1685 1685 1680 1779 1780 1786 1786 1775 1780 1780 1780 1780 1780 1780 1780 1780															<u> </u>
Southbound 2011 9 1398 1754 1888 1927 1965 2064 1741 1927 1820 7.42 1.97 0.05 Axle Spacing Classifica Southbound 2011 10 1290 1758 1774 1787 1766 1805 1664 1776 1692 6.88 0.71 0.04 Espacing Classifica Southbound 2011 10 1274 1793 1812 1800 1819 1857 1702 1810 1722 7.76 1.63 0.12 Axle Spacing Classifica Northbound 2011 11 1161 1628 1692 1697 1601 1686 1379 1663 1549 7 0.58 0.4 Axle Spacing Classifica Southbound 2011 11 1115 1683 1722 1773 1623 1677 1371 1706 1566 7.98 1.27 0.13 Axle Spacing Classifica Northbound 2011 12 1205 1488 1611 1625 1648 1779 1497 1628 1550 6.76 0.51 0.4 Axle Spacing Classifica Southbound 2011 12 1215 1546 1661 1656 1665 1665 1778 1488 1661 1573 7.5 1.27 0.06 Axle Spacing Classifica Northbound 2012 1 1040 1350 1305 1399 1561 1647 1387 1488 1413 7.13 0.5 0.4 Axle Spacing Classifica Southbound 2012 1 1026 1367 1544 1409 1578 1645 1369 1510 1420 7.94 1.28 0.07 Axle Spacing Classifica Southbound 2012 2 1177 1568 1671 1500 1547 1757 1449 1613 1541 6.75 0.71 0.04 Axle Spacing Classifica Southbound 2012 2 1163 1596 1681 1689 1446 1789 1438 1605 1543 7.45 1.75 0.13 Axle Spacing Classifica Southbound 2012 3 1283 1600 1639 1671 1704 1804 1499 1671 1600 6.98 0.62 0.4 Axle Spacing Classifica Southbound 2012 3 1283 1600 1639 1671 1704 1804 1499 1671 1600 6.98 0.62 0.4 Axle Spacing Classifica Northbound 2012 3 1283 1600 1639 1671 1704 1804 1499 1671 1600 6.98 0.62 0.4 Axle Spacing Classifica Northbound 2012 4 1409 1735 1786 1754 1766 1920 1706 1769 1725 6.76 0.87 0.4 Axle Spacing Classifica Northbound 2012 5 1414 1409 1735 1786 1754 1766 1	Southbound	2011	8	1466	1846	1876	1898	1886	1979	1735	1887	1812	7.43	1.98	0.11 Axle Spacing Classification
Southbound 2011 9 1398 1754 1888 1927 1965 2064 1741 1927 1820 7.42 1.97 0.05 Axle Spacing Classifica Southbound 2011 10 1290 1758 1774 1787 1766 1805 1664 1776 1692 6.88 0.71 0.84 Spacing Classifica Southbound 2011 10 1274 1793 1812 1800 1819 1857 1702 1810 1722 7.75 1.63 0.12 Axle Spacing Classifica Northbound 2011 11 1161 1628 1692 1697 1601 1686 1379 1663 1549 7 0.58 0.84 Spacing Classifica Southbound 2011 11 1115 1683 1722 1773 1623 1677 1371 1706 1566 7.98 1.27 0.13 Axle Spacing Classifica Northbound 2011 12 1205 1488 1611 1625 1648 1779 1497 1628 1550 6.76 0.51 0.84 Spacing Classifica Southbound 2011 12 1215 1546 1661 1656 1665 1665 1778 1488 1413 7.13 0.5 0.64 Spacing Classifica Northbound 2012 1 1040 1350 1505 1399 1551 1647 1387 1488 1413 7.13 0.5 0.64 Spacing Classifica Southbound 2012 1 1046 1367 1544 1409 1578 1645 1369 1510 1420 7.94 1.28 0.07 Axle Spacing Classifica Southbound 2012 2 1177 1568 1671 1620 1547 1757 1449 1613 1541 6.75 0.71 0.04 Spacing Classifica Southbound 2012 2 1163 1596 1681 1689 1446 1789 1438 1605 1543 7.45 1.75 0.13 Axle Spacing Classifica Southbound 2012 3 1283 1600 1639 1671 1704 1804 1499 1671 1600 6.98 0.62 0.62 0.64 Spacing Classifica Southbound 2012 3 1283 1600 1639 1671 1704 1804 1499 1671 1600 6.98 0.62 0.64 Spacing Classifica Southbound 2012 3 1283 1600 1639 1671 1704 1804 1499 1671 1600 6.98 0.62 0.64 Spacing Classifica Southbound 2012 4 1406 1750 1812 1765 1766 1920 1706 1799 1725 6.76 0.87 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74	Northbound	2011	9	1399	1692	1843	1896	1907	2013	1704	1882	1779	6.87	0.95	O Axle Spacing Classification
Northbound 2011 10 1290 1758 1774 1787 1766 1805 1664 1776 1692 6.88 0.71 0 Akle Spacing Classifica Northbound 2011 10 1274 1793 1812 1800 1819 1857 1702 1810 1722 7.76 1.63 0.12 Akle Spacing Classifica Northbound 2011 11 1161 1628 1692 1697 1601 1686 1379 1663 1549 7 0.58 0 Akle Spacing Classifica Southbound 2011 11 1115 1683 1722 1773 1623 1677 1371 1706 1566 7.98 1.27 0.13 Akle Spacing Classifica Southbound 2011 12 1215 1546 1661 1656 1665 1778 1488 1561 1573 7.5 1.27 0.06 Akle Spacing Classifica Southbound 2011 12 1215 1546 1661 1656 1665 1778 1488 1661 1573 7.5 1.27 0.06 Akle Spacing Classifica Southbound 2012 1 1000 1350 1505 1399 1561 1647 1387 1488 1413 7.13 0.5 0 Akle Spacing Classifica Southbound 2012 1 1026 1367 1544 1409 1578 1645 1369 1510 1420 7.94 1.28 0.07 Akle Spacing Classifica Northbound 2012 2 1177 1568 1671 1620 1547 1757 1449 1613 1541 6.75 0.71 0 Akle Spacing Classifica Northbound 2012 2 1183 1596 1681 1689 1446 1789 1438 1605 1543 7.45 1.75 0.71 0 Akle Spacing Classifica Northbound 2012 3 1283 1600 1639 1671 1704 1804 1499 1671 1600 6.98 0.62 0 Akle Spacing Classifica Northbound 2012 4 1409 1735 1786 1754 1766 1920 1706 1799 1725 6.76 0.87 0.87 0 Akle Spacing Classifica Northbound 2012 4 1409 1735 1786 1754 1766 1920 1706 1799 1725 6.76 0.87 0 Akle Spacing Classifica Northbound 2012 4 1409 1735 1786 1754 1766 1920 1706 1799 1725 6.76 0.87 0 Akle Spacing Classifica Northbound 2012 5 1434 1503 1670 1691 1655 1883 1732 1672 1652 6.76 0.87 0 Akle Spacing Classifica Northbound 2012 5 1434 1503 1670 1691 1655 1883 1732 1760 1760 1769 1725 6.76 0.87 0 Akle Spacing Classifica Northbound 2012 5 1436 1750 1812 1765 1764 1933 1719 1780 1736 7.42 1.86 0.17 Akle Spacing Classifica Northbound 2012 5 1436 1750 1812 1765 1764 1933 1719 1780 1736 7.42 1.86 0.17 Akle Spacing Classifica Southbound 2012 5 1436 1750 1771 1783 1858 1834 1891 1898 1732 1767 1670 1654 7.19 1.75 0.23 Akle Spacing Classifica Southbound 2012 5 1436 1750 1771 1783 1858 1834 1895 1801 1760 1830 1765 7.4 1.75 0.23 Akle Spacing Classi	Southhound	2011	9	1398	1754	1888	1927	1965	2064	1741	1927	1820	7 42	1 97	
Southbound 2011 10 1274 1793 1812 1800 1819 1857 1702 1810 1722 7.76 1.63 0.12 Axie Spacing Classifica Northbound 2011 11 1161 1628 1697 1601 1686 1379 1663 1549 7 0.53 0 Axie Spacing Classifica Southbound 2011 11 1115 1683 1722 1773 1623 1677 1371 1706 1566 7.98 1.27 0.13 Axie Spacing Classifica Northbound 2011 12 1205 1488 1611 1625 1648 1779 1497 1628 1550 6.76 0.51 0 Axie Spacing Classifica Northbound 2012 1 1040 1350 1505 1399 1561 1647 1387 1488 1413 7.13 0.5 0 Axie Spacing Classifica Northbound 2012 1 1026 1367 1544 1409 1578															, ,
Northbound 2011 11 1161 1628 1692 1697 1601 1686 1379 1663 1549 7 0.58 0 Axle Spacing Classifica Southbound 2011 11 1115 1683 1722 1773 1623 1677 1371 1706 1566 7.98 1.27 0.13 Axle Spacing Classifica Southbound 2011 12 1205 1488 1611 1625 1648 1779 1497 1628 1550 6.76 0.51 0 Axle Spacing Classifica Southbound 2011 12 1215 1546 1661 1656 1665 1778 1488 1661 1573 7.5 1.27 0.06 Axle Spacing Classifica Northbound 2012 1 1040 1350 1505 1399 1561 1647 1387 1488 1413 7.13 0.5 0 Axle Spacing Classifica Southbound 2012 1 1026 1367 1544 1409 1578 1645 1369 1510 1420 7.94 1.28 0.07 Axle Spacing Classifica Northbound 2012 2 1177 1568 1671 1620 1547 1757 1449 1613 1541 6.75 0.71 0 Axle Spacing Classifica Northbound 2012 2 1163 1596 1681 1689 1446 1789 1438 1605 1543 7.45 1.75 0.71 0 Axle Spacing Classifica Northbound 2012 3 1283 1600 1639 1671 1704 1804 1499 1671 1600 6.98 0.62 0 Axle Spacing Classifica Northbound 2012 3 1283 1600 1639 1671 1704 1804 1499 1671 1600 6.98 0.62 0 Axle Spacing Classifica Southbound 2012 4 1409 1373 1786 1685 1777 1832 1529 1682 1611 7.6 1.67 0.06 Axle Spacing Classifica Southbound 2012 4 1409 1735 1786 1754 1766 1920 1706 1769 1725 6.76 0.87 0 0.48 Spacing Classifica Southbound 2012 4 1406 1750 1812 1765 1764 1933 1719 1780 1736 7.42 1.86 0.17 Axle Spacing Classifica Southbound 2012 4 1406 1750 1812 1765 1764 1933 1719 1780 1736 7.42 1.86 0.17 Axle Spacing Classifica Southbound 2012 5 1416 1517 1670 1691 1695 1883 1732 1672 1652 6.95 0.79 0 Axle Spacing Classifica Southbound 2012 5 1416 1517 1670 1691 1695 1883 1732 1672 1652 6.95 0.79 0 Axle Spacing Classifica Northbound 2012 6 1418 1758 1780 1909 1801 1986 1706 1830 1765 7.4 1.75 0.23 Axle Spacing Classifica Southbound 2012 6 1418 1758 1780 1909 1801 1986 1706 1830 1765 7.4 1.75 0.23 Axle Spacing Classifica Southbound 2012 7 1419 1741 1826 1718 1815 1850 1687 1816 1709 1703 1786 1721 6.72 1.75 0.23 Axle Spacing Classifica Southbound 2012 7 1419 1741 1826 1718 1815 1815 1810 1829 1991 1695 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica South															
Southbound 2011 11 1115 1683 1722 1773 1623 1677 1371 1706 1566 7.98 1.27 0.13 Akle Spacing Classifica Northbound 2011 12 1205 1488 1611 1625 1648 1779 1497 1628 1550 6.76 0.51 0 Akle Spacing Classifica Southbound 2011 12 1215 1546 1661 1656 1665 1778 1488 1661 1573 7.5 1.27 0.06 Akle Spacing Classifica Northbound 2012 1 1040 1350 1505 1399 1561 1647 1387 1488 1413 7.13 0.5 0 Akle Spacing Classifica Southbound 2012 1 1026 1367 1544 1409 1578 1645 1369 1510 1420 7.94 1.28 0.07 Akle Spacing Classifica Northbound 2012 2 1177 1568 1671 1620 1547 1757 1449 1613 1541 6.75 0.71 0 Akle Spacing Classifica Southbound 2012 2 1163 1596 1681 1689 1446 1789 1438 1605 1543 7.45 1.75 0.13 Akle Spacing Classifica Southbound 2012 3 1283 1600 1639 1671 1704 1804 1499 1671 1600 6.98 0.62 0 Akle Spacing Classifica Southbound 2012 3 1283 1600 1639 1671 1704 1804 1499 1671 1600 6.98 0.62 0 Akle Spacing Classifica Southbound 2012 4 1409 1735 1786 1757 1832 1529 1682 1611 7.6 1.67 0.06 Akle Spacing Classifica Southbound 2012 4 1409 1755 1786 1754 1766 1920 1706 1769 1725 6.76 0.87 0 Akle Spacing Classifica Northbound 2012 4 1406 1750 1812 1765 1764 1933 1719 1780 1736 7.42 1.86 0.71 Akle Spacing Classifica Northbound 2012 5 1416 1517 1670 1691 1655 1883 1732 1672 1652 6.95 0.79 0 Akle Spacing Classifica Northbound 2012 5 1416 1517 1670 1685 1656 1880 1750 1670 1654 7.19 1.75 0.24 Akle Spacing Classifica Northbound 2012 6 1375 1717 1783 1858 1834 1958 1684 1825 1744 6.86 0.8 0 Akle Spacing Classifica Northbound 2012 6 1375 1717 1783 1858 1834 1958 1684 1825 1744 6.86 0.8 0 Akle Spacing Classifica Northbound 2012 7 1376 1707 1826 1708 1894 1993 1709 1709 1638 1726 7.74 1.17 0 Akle Spacing Classifica Southbound 2012 7 1376 1707 1826 1708 1894 1993 1709 1709 1638 1721 7.3 2.14 0.17 Akle Spacing Classifica Southbound 2012 7 1376 1707 1826 1708 1894 1993 1709 1638 1786 1721 7.3 2.14 0.17 Akle Spacing Classifica Southbound 2012 8 1389 1739 1781 1815 1815 1890 1638 1815 1890 1638 1786 1721 7.3 2.14 0.17 Akle Spacing Classifica Southbound 2012															
Southbound 2011 11 1115 1683 1722 1773 1623 1677 1371 1706 1566 7.98 1.27 0.13 ANE Spacing Classifica Northbound 2011 12 1205 1488 1611 1625 1648 1779 1497 1628 1550 6.76 0.51 0 ANE Spacing Classifica Southbound 2011 12 1215 1546 1661 1656 1665 1778 1488 1661 1573 7.5 1.27 0.06 ANE Spacing Classifica Northbound 2012 1 1040 1350 1505 1399 1561 1647 1387 1488 1413 7.13 0.5 0 ANE Spacing Classifica Northbound 2012 1 1006 1367 1544 1409 1578 1449 1613 1541 6.75 0.71 0 ANE Spacing Classifica Northbound 2012 2 1163 1596 1681 1689 1446 <td< td=""><td>Northbound</td><td>2011</td><td>11</td><td>1161</td><td>1628</td><td>1692</td><td>1697</td><td>1601</td><td>1686</td><td>1379</td><td>1663</td><td>1549</td><td>7</td><td>0.58</td><td>O Axle Spacing Classification</td></td<>	Northbound	2011	11	1161	1628	1692	1697	1601	1686	1379	1663	1549	7	0.58	O Axle Spacing Classification
Northbound 2011 12 1205 1488 1611 1625 1648 1779 1497 1628 1550 6.76 0.51 0 Axle Spacing Classifica Southbound 2012 1 1040 1350 1505 1399 1561 1647 1387 1488 1611 573 7.5 1.27 0.60 Axle Spacing Classifica Southbound 2012 1 1040 1350 1505 1399 1561 1647 1387 1488 1413 7.13 0.5 0.5 0 Axle Spacing Classifica Southbound 2012 1 1026 1367 1544 1409 1578 1645 1369 1510 1420 7.94 1.28 0.07 Axle Spacing Classifica Northbound 2012 2 1163 1596 1681 1689 1446 1789 1438 1605 1543 7.45 1.75 0.13 Axle Spacing Classifica Northbound 2012 2 1163 1596 1681 1689 1446 1789 1438 1605 1543 7.45 1.75 0.13 Axle Spacing Classifica Northbound 2012 3 1283 1600 1639 1671 1704 1804 1499 1671 1600 6.98 0.62 0 Axle Spacing Classifica Northbound 2012 4 1409 1735 1786 1754 1766 1920 1706 1769 1725 6.76 0.87 0 0.84 Spacing Classifica Southbound 2012 4 1409 1735 1786 1754 1766 1920 1706 1769 1725 6.76 0.87 0 0.84 Spacing Classifica Northbound 2012 5 1434 1503 1670 1691 1655 1883 1732 1672 1652 6.95 0.79 0 0.84 Spacing Classifica Southbound 2012 5 1434 1503 1670 1691 1655 1883 1732 1672 1652 6.95 0.79 0 0.84 Spacing Classifica Southbound 2012 6 1375 1717 1783 1858 1834 1958 1684 1825 1744 6.86 0.8 0.8 0 0.		2011				1722						1566	7.98		0.13 Axle Spacing Classification
Southbound 2011 12 1215 1546 1661 1656 1665 1778 1488 1661 1573 7.5 1.27 0.06 Axle Spacing Classifica Northbound 2012 1 1040 1350 1505 1399 1561 1647 1387 1488 1413 7.13 0.5 0 Axle Spacing Classifica Southbound 2012 1 1026 1367 1544 1409 1578 1645 1369 1510 1420 7.94 1.28 0.07 Axle Spacing Classifica Northbound 2012 2 1177 1568 1671 1620 1547 1757 1449 1613 1541 6.75 0.71 0 Axle Spacing Classifica Southbound 2012 2 1163 1596 1681 1689 1446 1789 1438 1605 1543 7.45 1.75 0.13 Axle Spacing Classifica Northbound 2012 3 1283 1600 1639 1671 1704 1804 1499 1671 1600 6.98 0.62 0 0 Axle Spacing Classifica Southbound 2012 3 1262 1609 1645 1685 1717 1832 1529 1682 1611 7.6 1.67 0.06 Axle Spacing Classifica Northbound 2012 4 1409 1735 1786 1754 1766 1920 1706 1769 1725 6.76 0.87 0.87 0 Axle Spacing Classifica Southbound 2012 4 1406 1750 1812 1765 1764 1933 1719 1780 1736 7.42 1.86 0.17 Axle Spacing Classifica Southbound 2012 5 1416 1517 1670 1691 1655 1883 1732 1672 1652 6.95 0.79 0 Axle Spacing Classifica Southbound 2012 5 1434 1503 1670 1685 1656 1880 1750 1670 1654 7.19 1.75 0.24 Axle Spacing Classifica Southbound 2012 6 1375 1717 1783 1858 1834 1958 1684 1825 1744 6.86 0.8 0.8 0 Axle Spacing Classifica Southbound 2012 6 1375 1717 1783 1858 1834 1958 1684 1825 1744 6.86 0.8 0.8 0 Axle Spacing Classifica Northbound 2012 7 1376 1707 1826 1708 1824 1903 1703 1706 1706 1707 1707 170 170 1707 170 1707 1707															
Northbound 2012 1 1040 1350 1505 1399 1561 1647 1387 1488 1413 7.13 0.5 0 Axle Spacing Classifica Southbound 2012 1 1026 1367 1544 1409 1578 1645 1369 1510 1420 7.94 1.28 0.07 Axle Spacing Classifica Northbound 2012 2 1177 1568 1671 1620 1547 1757 1449 1613 1541 6.75 0.71 0 Axle Spacing Classifica Southbound 2012 2 1163 1596 1681 1689 1446 1789 1438 1605 1543 7.45 1.75 0.13 Axle Spacing Classifica Northbound 2012 3 1283 1600 1639 1671 1704 1804 1499 1671 1600 6.98 0.62 0 Axle Spacing Classifica Southbound 2012 3 1283 1600 1639 1671 1704 1804 1499 1671 1600 6.98 0.62 0 Axle Spacing Classifica Northbound 2012 4 1409 1735 1786 1754 1766 1920 1706 1769 1725 6.76 0.87 0 Axle Spacing Classifica Northbound 2012 4 1409 1735 1786 1754 1766 1920 1706 1769 1725 6.76 0.87 0 Axle Spacing Classifica Southbound 2012 4 1406 1750 1812 1765 1764 1933 1719 1780 1736 7.42 1.86 0.17 Axle Spacing Classifica Southbound 2012 5 1434 1503 1670 1685 1655 1656 1880 1750 1670 1654 7.19 1.75 0.24 Axle Spacing Classifica Southbound 2012 5 1434 1503 1670 1685 1656 1880 1750 1670 1654 7.19 1.75 0.24 Axle Spacing Classifica Southbound 2012 6 1375 1717 183 1858 1834 1958 1684 1825 1744 6.86 0.8 0 Axle Spacing Classifica Northbound 2012 7 1376 1707 1826 1708 1824 1903 1703 1786 1721 6.72 1.75 0.23 Axle Spacing Classifica Northbound 2012 7 1376 1707 1826 1708 1824 1903 1703 1786 1721 6.72 1.77 0 Axle Spacing Classifica Northbound 2012 7 1419 1741 1826 1718 1815 1845 1950 1637 1815 1758 7.44 7 1.08 0.06 Axle Spacing Classifica Southbound 2012 8 1389 1739 1781 1815 1845 1950 1687 1814 1744 7 1 1.08 0.06 Axle Spacing Classifica Southbound 2012 8 1389 1739 1781 1815 1845 1950 1687 1815 1758 7.44 7 1.08 0.06 Axle Spacing Classifica Southbound 2012 8 1389 1739 1781 1815 1845 1950 1687 1815 1758 7.44 7 1.08 0.06 Axle Spacing Classifica Southbound 2012 8 1389 1739 1781 1815 1845 1950 1687 1815 1758 7.44 7 1.08 0.06 Axle Spacing Classifica Southbound 2012 8 1389 1739 1781 1815 1845 1950 1687 1815 1758 7.44 7 1.08 0.06 Axle Spacing Classifica Southbound 201															
Southbound 2012 1 1026 1367 1544 1409 1578 1645 1369 1510 1420 7.94 1.28 0.07 Axle Spacing Classifica Northbound 2012 2 1177 1568 1671 1620 1547 1757 1449 1613 1541 6.75 0.71 0 Axle Spacing Classifica Southbound 2012 2 1163 1596 1681 1689 1446 1789 1438 1605 1543 7.45 1.75 0.71 Axle Spacing Classifica Northbound 2012 3 1283 1600 1639 1671 1704 1804 1499 1671 1600 6.98 0.62 0 Axle Spacing Classifica Southbound 2012 3 1262 1609 1645 1685 1717 1832 1529 1682 1611 7.6 1.67 0.06 Axle Spacing Classifica Northbound 2012 4 1409 1735 1786 1754															<u> </u>
Northbound 2012 2 1177 1568 1671 1620 1547 1757 1449 1613 1541 6.75 0.71 0 Axle Spacing Classifica Southbound 2012 2 1163 1596 1681 1689 1446 1789 1438 1605 1543 7.45 1.75 0.13 Axle Spacing Classifica Northbound 2012 3 1283 1600 1639 1671 1704 1804 1499 1671 1600 6.98 0.62 0 Axle Spacing Classifica Southbound 2012 3 1262 1609 1645 1685 1717 1832 1529 1682 1611 7.6 1.67 0.06 Axle Spacing Classifica Northbound 2012 4 1409 1735 1786 1754 1766 1920 1706 1769 1725 6.76 0.87 0 Axle Spacing Classifica Southbound 2012 4 1406 1750 1812 1765 1764 1933 1719 1780 1736 7.42 1.86 0.17 Axle Spacing Classifica Southbound 2012 5 1416 1517 1670 1691 1655 1883 1732 1672 1652 6.95 0.79 0 Axle Spacing Classifica Northbound 2012 5 1416 1517 1670 1685 1656 1880 1750 1670 1667 1654 7.19 1.75 0.24 Axle Spacing Classifica Northbound 2012 6 1375 1717 1833 1858 1834 1958 1684 1825 1744 6.86 0.8 0.8 0.8 0.4 Axle Spacing Classifica Southbound 2012 6 1418 1758 1780 1909 1801 1986 1706 1830 1765 7.4 1.75 0.23 Axle Spacing Classifica Southbound 2012 7 1376 1707 1826 1708 1824 1903 1703 1786 1721 6.72 1.17 0 Axle Spacing Classifica Southbound 2012 7 1419 1741 1826 1718 1815 1890 1638 1786 1721 6.72 1.17 0 Axle Spacing Classifica Southbound 2012 8 1389 1739 1781 1815 1801 1829 1991 1695 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1695 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1695 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1695 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1695 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1695 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1695 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1695 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica Southbound	Northbound	2012	1	1040	1350		1399	1561	1647	1387	1488	1413			O Axle Spacing Classification
Northbound 2012 2 1177 1568 1671 1620 1547 1757 1449 1613 1541 6.75 0.71 0 Axle Spacing Classifica Southbound 2012 2 1163 1596 1681 1689 1446 1789 1438 1605 1543 7.45 1.75 0.13 Axle Spacing Classifica Northbound 2012 3 1283 1600 1639 1671 1704 1804 1499 1671 1600 6.98 0.62 0 Axle Spacing Classifica Southbound 2012 3 1262 1609 1645 1685 1717 1832 1529 1682 1611 7.6 1.67 0.06 Axle Spacing Classifica Northbound 2012 4 1409 1735 1786 1754 1766 1920 1706 1769 1725 6.76 0.87 0 Axle Spacing Classifica Southbound 2012 4 1406 1750 1812 1765 1764 1933 1719 1780 1736 7.42 1.86 0.17 Axle Spacing Classifica Southbound 2012 5 1416 1517 1670 1691 1655 1883 1732 1672 1652 6.95 0.79 0 Axle Spacing Classifica Northbound 2012 5 1416 1517 1670 1685 1656 1880 1750 1670 1667 1654 7.19 1.75 0.24 Axle Spacing Classifica Northbound 2012 6 1375 1717 1833 1858 1834 1958 1684 1825 1744 6.86 0.8 0.8 0.8 0.4 Axle Spacing Classifica Southbound 2012 6 1418 1758 1780 1909 1801 1986 1706 1830 1765 7.4 1.75 0.23 Axle Spacing Classifica Southbound 2012 7 1376 1707 1826 1708 1824 1903 1703 1786 1721 6.72 1.17 0 Axle Spacing Classifica Southbound 2012 7 1419 1741 1826 1718 1815 1890 1638 1786 1721 6.72 1.17 0 Axle Spacing Classifica Southbound 2012 8 1389 1739 1781 1815 1801 1829 1991 1695 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1695 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1695 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1695 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1695 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1695 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1695 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1695 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica Southbound	Southbound	2012	1	1026	1367	1544	1409	1578	1645	1369	1510	1420	7.94	1.28	0.07 Axle Spacing Classification
Southbound 2012 2 1163 1596 1681 1689 1446 1789 1438 1605 1543 7.45 1.75 0.13 Axle Spacing Classifica Northbound 2012 3 1283 1600 1639 1671 1704 1804 1499 1671 1600 6.98 0.62 0 Axle Spacing Classifica Southbound 2012 3 1262 1609 1645 1685 1717 1832 1529 1682 1611 7.6 0.67 0.06 Axle Spacing Classifica Northbound 2012 4 1409 1735 1786 1754 1766 1920 1706 1769 1725 6.76 0.87 0.06 Axle Spacing Classifica Northbound 2012 4 1406 1750 1812 1765 1764 1933 1719 1780 736 7.42 1.86 0.17 Axle Spacing Classifica Northbound 2012 5 1416 1517 1670 1691															
Northbound 2012 3 1283 1600 1639 1671 1704 1804 1499 1671 1600 6.98 0.62 0 Axle Spacing Classifica Southbound 2012 3 1262 1609 1645 1685 1717 1832 1529 1682 1611 7.6 1.67 0.06 Axle Spacing Classifica Southbound 2012 4 1409 1735 1786 1754 1766 1920 1706 1769 1725 6.76 0.87 0 Axle Spacing Classifica Southbound 2012 4 1406 1750 1812 1765 1764 1933 1719 1780 1736 7.42 1.86 0.17 Axle Spacing Classifica Northbound 2012 5 1416 1517 1670 1691 1655 1883 1732 1672 1652 6.95 0.79 0 Axle Spacing Classifica Southbound 2012 5 1434 1503 1670 1685 1656 1880 1750 1670 1654 7.19 1.75 0.24 Axle Spacing Classifica Southbound 2012 6 1375 1717 1783 1858 1834 1958 1684 1825 1674 6.86 0.8 0 Axle Spacing Classifica Southbound 2012 6 1418 1758 1780 1909 1801 1986 1706 1830 1765 7.4 1.75 0.23 Axle Spacing Classifica Southbound 2012 7 1376 1707 1826 1708 1824 1903 1703 1786 1721 6.72 1.17 0 Axle Spacing Classifica Southbound 2012 7 1419 1741 1826 1718 1815 1890 1638 1786 1721 7.3 2.14 0.17 Axle Spacing Classifica Southbound 2012 8 1389 1739 1781 1815 1845 1950 1687 1814 1754 7 1.08 0.06 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1655 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1655 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1655 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1655 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1655 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1655 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1655 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1655 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1815 1801 1829 1991 1655 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica Southbound 2012 8 1408															, ,
Southbound 2012 3 1262 1609 1645 1685 1717 1832 1529 1682 1611 7.6 1.67 0.06 Axle Spacing Classifica Northbound 2012 4 1409 1735 1786 1754 1766 1920 1706 1769 1725 6.76 0.87 0 Axle Spacing Classifica Northbound 2012 4 1406 1750 1812 1765 1764 1933 1719 1780 1736 7.42 1.86 0.17 Axle Spacing Classifica Northbound 2012 5 1416 1517 1670 1691 1655 1883 1732 1672 1652 6.95 0.79 0 Axle Spacing Classifica Southbound 2012 5 1434 1503 1670 1685 1686 1880 1750 1670 1654 7.19 1.75 0.24 Axle Spacing Classifica Northbound 2012 6 1375 1717 1783 1858 1834 1958 1684 1825 1744 6.86 0.8 0 Axle Spacing Classifica Southbound 2012 6 1418 1758 1780 1909 1801 1986 1706 1830 1765 7.4 1.75 0.23 Axle Spacing Classifica Northbound 2012 7 1376 1707 1826 1708 1824 1903 1703 1786 1721 6.72 1.17 0 Axle Spacing Classifica Southbound 2012 7 1419 1741 1826 1718 1815 1890 1638 1786 1721 7.3 2.14 0.17 Axle Spacing Classifica Southbound 2012 8 1389 1739 1781 1815 1845 1950 1687 1814 1758 7.41 7.108 0.06 Axle Spacing Classifica Southbound 2012 8 1389 1739 1781 1815 1845 1950 1687 1814 1758 7.41 2.15 0.17 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1695 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1695 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1695 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1695 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1695 1815 1758 7.41															
Northbound 2012 4 1409 1735 1786 1754 1766 1920 1706 1769 1725 6.76 0.87 0 Axle Spacing Classifica Southbound 2012 4 1406 1750 1812 1765 1764 1933 1719 1780 1736 7.42 1.86 0.17 Axle Spacing Classifica Northbound 2012 5 1416 1517 1670 1691 1655 1883 1732 1672 1652 6.95 0.79 0 Axle Spacing Classifica Southbound 2012 5 1434 1503 1670 1685 1685 1656 1880 1750 1670 1654 7.19 1.75 0.24 Axle Spacing Classifica Northbound 2012 6 1375 1717 1783 1858 1834 1958 1684 1825 1744 6.86 0.8 0 Axle Spacing Classifica Southbound 2012 6 1418 1758 1780 1909 1801 1986 1706 1830 1765 7.4 1.75 0.23 Axle Spacing Classifica Southbound 2012 7 1376 1707 1826 1708 1824 1903 1703 1786 1721 6.72 1.17 0 Axle Spacing Classifica Southbound 2012 7 1419 1741 1826 1718 1815 1890 1638 1786 1721 7.3 2.14 0.17 Axle Spacing Classifica Southbound 2012 8 1389 1739 1781 1815 1845 1950 1687 1814 1744 7.3 1.08 0.06 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1695 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1695 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1695 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1695 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1695 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1695 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1695 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1695 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1695 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1695 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1695 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica Southbound 2012 8	Northbound		3	1283	1600	1639			1804	1499					Axle Spacing Classification
Northbound 2012 4 1409 1735 1786 1754 1766 1920 1706 1769 1725 6.76 0.87 0 Axle Spacing Classifica Southbound 2012 4 1406 1750 1812 1765 1764 1933 1719 1780 1736 7.42 1.86 0.17 Axle Spacing Classifica Northbound 2012 5 1416 1517 1670 1691 1655 1883 1732 1672 1652 6.95 0.79 0 Axle Spacing Classifica Southbound 2012 5 1434 1503 1670 1685 1685 1656 1880 1750 1670 1654 7.19 1.75 0.24 Axle Spacing Classifica Northbound 2012 6 1375 1717 1783 1858 1834 1958 1684 1825 1744 6.86 0.8 0 Axle Spacing Classifica Southbound 2012 6 1418 1758 1780 1909 1801 1986 1706 1830 1765 7.4 1.75 0.23 Axle Spacing Classifica Southbound 2012 7 1376 1707 1826 1708 1824 1903 1703 1786 1721 6.72 1.17 0 Axle Spacing Classifica Southbound 2012 7 1419 1741 1826 1718 1815 1890 1638 1786 1721 7.3 2.14 0.17 Axle Spacing Classifica Southbound 2012 8 1389 1739 1781 1815 1845 1950 1687 1814 1744 7.3 1.08 0.06 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1695 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1695 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1695 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1695 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1695 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1695 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1695 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1695 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1695 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1695 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1695 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica Southbound 2012 8	Southbound	2012	3	1262	1609	1645	1685	1717	1832	1529	1682	1611	7.6	1.67	0.06 Axle Spacing Classification
Southbound 2012 4 1406 1750 1812 1765 1764 1933 1719 1780 1736 7.42 1.86 0.17 Axle Spacing Classifica Northbound 2012 5 1416 1517 1670 1691 1655 1883 1732 1672 1652 6.95 0.79 0 Axle Spacing Classifica Southbound 2012 5 1414 1503 1670 1685 1656 1880 1750 1670 1670 1670 1670 1670 1670 1670 167															
Northbound 2012 5 1416 1517 1670 1691 1655 1883 1732 1672 1652 6.95 0.79 0 Axle Spacing Classifica Southbound 2012 5 1434 1503 1670 1685 1656 1880 1750 1670 1654 7.19 1.75 0.24 Axle Spacing Classifica Southbound 2012 6 1375 1717 1783 1858 1834 1958 1684 1825 1744 6.86 0.8 0 Axle Spacing Classifica Southbound 2012 6 1418 1758 1780 1909 1801 1986 1706 1830 1765 7.4 1.75 0.23 Axle Spacing Classifica Northbound 2012 7 1376 1707 1826 1708 1824 1903 1703 1786 1721 6.72 1.17 0 Axle Spacing Classifica Southbound 2012 7 1419 1741 1826 1718 1815 1890 1638 1786 1721 7.3 2.14 0.17 Axle Spacing Classifica Southbound 2012 8 1389 1739 1781 1815 1845 1950 1687 1814 1744 7 1.08 0.06 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1695 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1695 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1695 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1695 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1695 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1695 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1695 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1695 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1695 1815 1758 7.41															
Southbound 2012 5 1434 1503 1670 1685 1656 1880 1750 1670 1654 7.19 1.75 0.24 Axle Spacing Classifica Northbound 2012 6 1375 1717 1783 1858 1834 1958 1684 1825 1744 6.86 0.8 0 Axle Spacing Classifica Southbound 2012 6 1418 1758 1780 1909 1801 1986 1706 1830 1765 7.4 1.75 0.23 Axle Spacing Classifica Northbound 2012 7 1376 1707 1826 1708 1824 1903 1703 1786 721 6.72 1.17 0 Axle Spacing Classifica Northbound 2012 7 1419 1741 1826 1718 1815 1890 1638 1786 1721 6.72 1.17 0 Axle Spacing Classifica Northbound 2012 8 1389 1739 1781 1815 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>															
Northbound 2012 6 1375 1717 1783 1858 1834 1958 1684 1825 1744 6.86 0.8 0 Axle Spacing Classifica Southbound 2012 6 1418 1758 1780 1909 1801 1986 1706 1830 1765 7.4 1.75 0.23 Axle Spacing Classifica Northbound 2012 7 1376 1707 1826 1708 1824 1903 1703 1786 1721 6.72 1.17 0 Axle Spacing Classifica Southbound 2012 7 1419 1741 1826 1718 1815 1890 1638 1786 1721 6.72 1.17 0 Axle Spacing Classifica Northbound 2012 8 1389 1739 1781 1815 1845 1950 1687 1814 1744 7 1.08 0.04 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801	Northbound		5	1416		1670	1691		1883		1672				Axle Spacing Classification
Northbound 2012 6 1375 1717 1783 1858 1834 1958 1684 1825 1744 6.86 0.8 0 Axle Spacing Classifica Southbound 2012 6 1418 1758 1780 1909 1801 1986 1706 1830 1765 7.4 1.75 0.23 Axle Spacing Classifica Northbound 2012 7 1376 1707 1826 1708 1824 1903 1703 1786 1721 6.72 1.17 0 Axle Spacing Classifica Southbound 2012 7 1419 1741 1826 1718 1815 1890 1638 1786 1721 6.72 1.17 0 Axle Spacing Classifica Northbound 2012 8 1389 1739 1781 1815 1845 1950 1687 1814 1744 7 1.08 0.04 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801	Southbound	2012	5	1434	1503	1670	1685	1656	1880	1750	1670	1654	7.19	1.75	0.24 Axle Spacing Classification
Southbound 2012 6 1418 1758 1780 1909 1801 1986 1706 1830 1765 7.4 1.75 0.23 Axle Spacing Classifica Northbound 2012 7 1376 1707 1826 1708 1824 1903 1703 1786 1721 6.72 1.17 0 Axle Spacing Classifica Southbound 2012 7 1419 1741 1826 1718 1815 1890 1638 1761 1721 7.3 2.14 0.17 Axle Spacing Classifica Northbound 2012 8 1389 1739 1781 1815 1845 1950 1687 1814 1744 7 1.08 0.06 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1695 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801			6												
Northbound 2012 7 1376 1707 1826 1708 1824 1903 1703 1786 1721 6.72 1.17 O Axle Spacing Classifica Southbound 2012 7 1419 1741 1826 1718 1815 1890 1638 1786 1721 7.3 2.14 0.17 Axle Spacing Classifica Northbound 2012 8 1389 1739 1781 1815 1845 1950 1687 1814 1744 7 1.08 0.06 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1695 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1695 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1695 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1695 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1695 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1695 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1695 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1695 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1695 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1695 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1695 1815 1758 1758 1758 1758 1758 1758 175															
Southbound 2012 7 1419 1741 1826 1718 1815 1890 1638 1786 1721 7.3 2.14 0.17 Axle Spacing Classifica Northbound 2012 8 1389 1739 1781 1815 1845 1950 1687 1814 1744 7 1.08 0.06 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1695 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica															
Northbound 2012 8 1389 1739 1781 1815 1845 1950 1687 1814 1744 7 1.08 0.06 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1695 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica	Northbound								1903						Axle Spacing Classification
Northbound 2012 8 1389 1739 1781 1815 1845 1950 1687 1814 1744 7 1.08 0.06 Axle Spacing Classifica Southbound 2012 8 1408 1767 1815 1801 1829 1991 1695 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica	Southbound	2012	7	1419	1741	1826	1718	1815	1890	1638	1786	1721	7.3	2.14	0.17 Axle Spacing Classification
Southbound 2012 8 1408 1767 1815 1801 1829 1991 1695 1815 1758 7.41 2.15 0.17 Axle Spacing Classifica			, Q												
Northbound 2012 9 1354 1675 1834 1846 1804 1924 1710 1828 1735 6.62 1.1 0 Axle Spacing Classifica	Northbound	2012	9	1354	1675	1834	1846	1804	1924	1710	1828	1735	6.62	1.1	Axle Spacing Classification

WSDOT Perma	nent Traffic	Recorder	- S819: On SF	R 411 at milep	oost 7.97 A: S/	O SANDY BEND	ROAD - LEXI	INGTON				January	2010 - August 202	20
TravelDirection	Year Moi	nth Avg	Sunday AvgN	/londay AvgT	uesday AvgW	ednesday AvgTh	ursday Avg	Friday Avg	Saturday Avg	Wkday Av	gDay Sing	leUnitTruckPct DoubleUn	itTruckPct TripleU	nitTruckPct VehicleClassificationType
Southbound	2012	9	1369	1711	1844	1848	1825	1943	1749	1839	1756	6.94	1.95	0.17 Axle Spacing Classification
Northbound	2012	10	1211	1686	1716	1759	1733	1802	1560	1736	1638	7.29	0.73	0 Axle Spacing Classification
Southbound	2012	10	1196	1688	1739	1791	1765	1824	1594	1765	1657	7.81	1.8	0.18 Axle Spacing Classification
Northbound	2012	11	1131	1530	1654	1675	1563	1677	1358	1631	1513	7.18	0.59	0 Axle Spacing Classification
Southbound	2012	11	1127	1516	1685	1706	1600	1695	1366	1664	1528	7.62	1.89	0.2 Axle Spacing Classification
Northbound	2012	12	1179	1580	1471	1599	1610	1658	1417	1560	1502	6.97	0.6	0 Axle Spacing Classification
Southbound	2012	12	1176	1639	1497	1601	1666	1703	1457	1588	1534	7.76	1.51	0.13 Axle Spacing Classification
Northbound	2013	1	1015	1471	1410	1535	1553	1655	1184	1499	1403	7.59	0.71	0 Axle Spacing Classification
Southbound	2013	1	1037	1506	1425	1558	1571	1650	1259	1518	1429	8.42	2.09	0.21 Axle Spacing Classification
Northbound	2013	2	1174	1521	1597	1626	1609	1698	1448	1611	1525	6.89	0.72	0 Axle Spacing Classification
Southbound	2013	2	1170	1563	1627	1662	1636	1744	1472	1642	1553	7.92	1.99	0.13 Axle Spacing Classification
Northbound	2013	3	1308	1661	1672	1720	1726	1811	1614	1706	1645	3.22	0.55	0 Axle Spacing Classification
Southbound	2013	3	1332	1696	1685	1698	1703	1831	1613	1695	1651	4.71	1.39	0.12 Axle Spacing Classification
Northbound	2013	4	1296	1753	1803	1792	1730	1872	1652	1775	1700	3.11	0.53	0 Axle Spacing Classification
Southbound	2013	4	1286	1822	1847	1825	1759	1872	1688	1810	1728	4.27	1.79	0.12 Axle Spacing Classification
Northbound	2013	5	1343	1626	1754	1801	1768	1936	1687	1774	1702	2.8	0.47	0 Axle Spacing Classification
Southbound	2013	5	1364	1660	1790	1805	1796	1964	1705	1797	1726	3.86	1.73	0.17 Axle Spacing Classification
Northbound	2013	6	1439	1745	1770	1845	1820	2002	1844	1812	1781	2.82	0.56	0 Axle Spacing Classification
Southbound	2013	6	1489	1820	1781	1834	1822	2014	1843	1812	1800	3.85	1.45	0.06 Axle Spacing Classification
Northbound	2013	7	1366	1753	1788	1845	1757	1876	1626	1797	1716	2.84	0.52	0 Axle Spacing Classification
Southbound	2013	7	1397	1817	1830	1847	1796	1864	1606	1824	1737	4.1	1.59	0.11 Axle Spacing Classification
Northbound	2013	8	1404	1676	1657	1720	1689	1842	1679	1689	1667	2.92	0.48	0 Axle Spacing Classification
Southbound	2013	8	1439	1714	1745	1748	1748	1874	1699	1747	1710	4.25	1.57	0.12 Axle Spacing Classification
Northbound	2013	9	1132	1354	1610	1675	1661	1729	1508	1649	1524	2.66	0.53	0 Axle Spacing Classification
Southbound	2013	9	1188	1434	1637	1659	1676	1755	1556	1657	1558	4.15	1.36	0.13 Axle Spacing Classification
Northbound	2013	10	1130	1297	1229	1239	1262	1318	1218	1243	1242	2.98	0.48	0 Axle Spacing Classification
Southbound	2013	10	1112	1338	1288	1297	1308	1399	1291	1298	1290	4.57	1.16	0.08 Axle Spacing Classification
Northbound	2013	11	1060	1244	1288	1402	1305	1358	1227	1332	1269	2.6	0.47	0 Axle Spacing Classification
Southbound	2013	11	1078	1266	1300	1361	1296	1375	1247	1319	1275	4.07	1.25	0.08 Axle Spacing Classification
Northbound	2013	12	1085	1463	1429	1351	1423	1476	1334	1401	1366	2.87	0.29	0 Axle Spacing Classification
Southbound	2013	12	1091	1498	1434	1356	1432	1451	1345	1407	1372	4.16	0.95	0.07 Axle Spacing Classification
Northbound	2014	1	1015	1354	1399	1330	1399	1483	1250	1376	1319	2.49	0.3	0 Axle Spacing Classification
Southbound	2014	1	1033	1397	1453	1368	1464	1533	1272	1428	1360	3.8	1.39	0.07 Axle Spacing Classification
Northbound	2014	2	904	1229	1353	1433	1381	1329	1184	1389	1259	2.78	0.24	O Axle Spacing Classification
Southbound	2014	2	929	1314	1410	1466	1427	1393	1223	1434	1309	4.2	1.22	0.08 Axle Spacing Classification
Northbound	2014	3	1106	1408	1451	1463	1434	1535	1470	1449	1410	2.61	0.35	0 Axle Spacing Classification
Southbound	2014	3	1129	1495	1499	1592	1473	1612	1525	1521	1475	4.04	1.28	0.07 Axle Spacing Classification
Northbound	2014	4	1285	1559	1545	1610	1559	1667	1472	1571	1528	2.61	0.52	Axle Spacing Classification
Southbound	2014	4	1286	1600	1590	1614	1575	1730	1466	1593	1552	3.92	1.22	0.06 Axle Spacing Classification
Northbound	2014	5	1254	1536	1680	1709	1693	1746	1546	1694	1595	2.56	0.56	Axle Spacing Classification
Southbound	2014	5	1294	1581	1723	1725	1707	1803	1558	1718	1627	3.92	1.1	0.06 Axle Spacing Classification
Northbound	2014	6	1801	1594	1641	1710	1659	1827	1646	1670	1697	2.89	0.65	0.06 Axle Spacing Classification
Southbound	2014	6	1422	1663	1685	1766	1684	1865	1683	1712	1681	4.13	1.38	0.06 Axle Spacing Classification
Northbound	2014	7	1385	1711	1745	1782	1785	1821	1559	1771	1684	2.96	0.59	0 Axle Spacing Classification
Southbound	2014	7	1441	1734	1758	1747	1765	1807	1593	1757	1692	4.22	1.35	0.12 Axle Spacing Classification
Northbound	2014	8	1360	1718	1703	1686	1688	1828	1633	1692	1659	2.66	0.48	0.06 Axle Spacing Classification
Southbound	2014	8	1383	1720	1716	1700	1671	1858	1646	1696	1671	4.14	1.26	0.12 Axle Spacing Classification
Northbound	2014	9	1344	1623	1689	1722	1724	1816	1653	1712	1653	3.15	0.42	0.06 Axle Spacing Classification
Southbound	2014	9	1364	1650	1704	1756	1721	1819	1659	1727	1668	4.68	1.68	0.18 Axle Spacing Classification
Northbound	2014	10	1239	1659	1603	1707	1682	1788	1536	1664	1602	3.34	0.43	0.06 Axle Spacing Classification
Southbound	2014	10	1212	1693	1641	1720	1694	1809	1547	1685	1617	4.48	1.96	0.18 Axle Spacing Classification
Northbound	2014	11	1101	1590	1577	1615	1537	1683	1383	1576	1498	2.83	0.34	0 Axle Spacing Classification
Southbound	2014	11	1102	1585	1576	1629	1553	1688	1373	1586	1501	4.16	1.34	0.2 Axle Spacing Classification
Northbound	2014	12	1174	1553	1545	1546	1514	1651	1427	1535	1487	2.68	0.34	0 Axle Spacing Classification
Southbound	2014	12	1169	1587	1535	1533	1577	1683	1419	1548	1500	4.13	1.26	0.13 Axle Spacing Classification
Northbound	2015	1	1110	1514	1598	1592	1423	1624	1406	1538	1467	2.93	0.34	0 Axle Spacing Classification
Southbound	2015	1	1099	1543	1593	1604	1442	1652	1397	1546	1476	4.26	1.56	0.07 Axle Spacing Classification
Northbound	2015	2	1227	1593	1621	1675	1660	1746	1825	1652	1621	2.78	0.37	0 Axle Spacing Classification
Southbound	2015	2	1206	1594	1640	1644	1662	1780	1837	1649	1623	4.19	1.17	0.06 Axle Spacing Classification
Northbound	2015	3	1305	1668	1705	1706	1753	1832	1589	1721	1651	3.02	0.42	0.06 Axle Spacing Classification
Southbound	2015	3	1294	1665	1692	1695	1737	1826	1572	1708	1640	4.33	1.28	0.12 Axle Spacing Classification
Northbound	2015	4	1388	1811	1748	1820	1803	1884	1674	1790	1733	2.99	0.4	0.06 Axle Spacing Classification
Southbound	2015	4	1422	1818	1758	1829	1794	1912	1676	1794	1744	4.23	1.32	0.11 Axle Spacing Classification
Northbound Southbound	2015	5	1470	1660	1812	1901	1914	1999	1764	1876	1789	3.31	0.5	0 Axle Spacing Classification
	2015	5	1464	1702	1800	1883	1897	1992	1753	1860	1784	4.22	1.69	0.17 Axle Spacing Classification

						O SANDY BEND							y 2010 - August 202	
			<u>-</u>		uesday AvgW						~ / ~		<u></u>	nitTruckPct VehicleClassificationType
orthbound uthbound	2015 2015	6	1525 1555	1863 1901	1898 1896	1952 1938	1976 1964	2092	1842 1859	1942 1933	1878 1885	3.14 4.35	0.48	0 Axle Spacing Classification 0.16 Axle Spacing Classification
rthbound	2015	7	1435	1885	1936	1978	1969	2004	1579	1961	1827	2.93	0.43	0 Axle Spacing Classificatio
uthbound	2015	7	1410	1881	1923	1952	2013	2027	1580	1963	1827	4.23	1.57	0.11 Axle Spacing Classificatio
rthbound	2015	8	1464	1871	1898	1959	1945	1972	1706	1934	1831	3.08	0.5	0 Axle Spacing Classification
uthbound	2015	8	1504	1882	1905	1954	1943	2012	1701	1934	1843	4.37	1.64	0.16 Axle Spacing Classificatio
rthbound	2015	9	1467	1801	1946	1953	1935	2044	1793	1945	1848	2.86	0.59	0 Axle Spacing Classificatio
uthbound	2015	9	1455	1813	1958	1953	1980	2046	1810	1964	1859	4.03	1.93	0.16 Axle Spacing Classificatio
rthbound	2015	10	1335	1830	1890	1905	1900	2004	1736	1898	1800	2.54	0.39	0 Axle Spacing Classificatio
uthbound	2015	10	1367	1853	1897	1901	1919	2028	1745	1906	1816	3.84	1.48	0.05 Axle Spacing Classificatio
orthbound	2015	11	1170	1663	1812	1759	1585	1733	1385	1719	1587	2.61	0.45	0.06 Axle Spacing Classificatio
uthbound	2015	11	1192	1646	1813	1759	1572	1865	1385	1715	1605	3.97	1.32	0.19 Axle Spacing Classification
rthbound	2015	12	1135	1594	1646	1663	1579	1579	1368	1629	1509	3.22	0.33	0.07 Axle Spacing Classification
uthbound	2015	12	1141	1614	1653	1683	1560	1574	1379	1632	1515	4.33	1.38	0.2 Axle Spacing Classification
rthbound	2016	1	1060	1468	1592	1643	1627	1592	1367	1621	1478	3	0.34	0 Axle Spacing Classification
uthbound	2016	1	1061	1474	1609	1617	1624	1596	1346	1617	1475	4.17	1.5	0.14 Axle Spacing Classification
rthbound	2016 2016	2	1269	1671 1669	1744 1766	1771 1770	1745 1731	1768 1794	1662 1648	1753 1756	1661 1661	3.02	0.36	0 Axle Spacing Classification
uthbound rthbound	2016	3	1252 1293	1667	1751	1783	1779	1893	1594	1771	1680	4.23 3.17	1.63 0.41	0.06 Axle Spacing Classification 0 Axle Spacing Classification
uthbound	2016	3	1324	1687	1788	1790	1779	1901	1618	1771	1698	4.24	1.8	0.12 Axle Spacing Classification
rthbound	2016	4	1480	1811	1839	1852	1851	1955	1741	1847	1790	3.12	0.45	0 Axle Spacing Classification
ıthbound	2016	4	1491	1825	1853	1829	1878	1981	1753	1853	1801	4.21	1.5	0.11 Axle Spacing Classification
rthbound	2016	5	1435	1761	1917	1924	1869	1962	1662	1903	1790	2.98	0.45	0 Axle Spacing Classification
ithbound	2016	5	1425	1802	1957	1924	1893	1982	1653	1925	1805	3.84	1.67	0.11 Axle Spacing Classification
rthbound	2016	6	1590	1840	1854	1884	1852	1977	1797	1863	1828	3.11	0.6	0 Axle Spacing Classification
thbound	2016	6	1595	1858	1859	1897	1870	2012	1808	1875	1843	4.34	1.9	0.16 Axle Spacing Classification
rthbound	2016	7	1424	1630	1734	1821	1819	1881	1614	1791	1703	2.83	0.59	0 Axle Spacing Classification
ıthbound	2016	7	1490	1676	1724	1768	1806	1910	1602	1766	1711	4.37	1.52	0.17 Axle Spacing Classification
rthbound	2016	8	1386	1703	1764	1600	1664	1745	1578	1676	1634	2.76	0.49	0.06 Axle Spacing Classification
uthbound	2016	8	1462	1751	1761	1854	1822	1893	1644	1812	1741	4.07	2.12	0.4 Axle Spacing Classification
rthbound	2016	9	1364	1621	1824	1782	1689	1807	1625	1765	1673	2.75	0.48	0 Axle Spacing Classification
rthbound	2016	10	1186	1682	1725	1691	1719	1803	1458	1712	1609	2.99	0.37	0 Axle Spacing Classification
ıthbound	2016	10	1223	1757	1840	1743	1727	1897	1484	1770	1667	4.32	1.8	0.24 Axle Spacing Classification
rthbound	2016 2016	11 11	1212 1230	1629 1664	1697 1708	1690 1731	1618 1649	1660 1681	1425 1444	1668 1696	1562 1587	2.55 3.82	0.45 1.25	0 Axle Spacing Classification 0.06 Axle Spacing Classification
rthbound rthbound	2016	12	1187	1438	1653	1610	1423	1588	1378	1562	1468	2.86	0.34	0 Axle Spacing Classification
uthbound	2016	12	1219	1505	1689	1605	1440	1601	1418	1578	1497	4.28	1.14	0.07 Axle Spacing Classification
rthbound	2017	1	959	1387	1569	1386	1450	1583	1219	1468	1365	3.31	0.29	0 Axle Spacing Classification
uthbound	2017	1	1004	1486	1598	1458	1493	1634	1251	1516	1418	4.72	1.22	0.21 Axle Spacing Classification
rthbound	2017	2	1122	1473	1668	1691	1677	1755	1763	1679	1593	3.2	0.44	Axle Spacing Classification
rthbound	2017	3	1267	1641	1700	1699	1696	1833	1527	1698	1623	2.98	0.55	Axle Spacing Classification
uthbound	2017	3	1285	1674	1737	1728	1718	1828	1556	1728	1647	4.13	1.74	0.12 Axle Spacing Classification
rthbound	2017	4	1371	1740	1806	1779	1783	1880	1616	1789	1711	2.77	0.47	0 Axle Spacing Classification
ithbound	2017	4	1394	1790	1836	1792	1802	1870	1666	1810	1736	3.96	1.4	0.12 Axle Spacing Classification
rthbound	2017	5	1546	1740	1815	1909	1823	2002	1783	1849	1803	2.67	0.39	0 Axle Spacing Classification
ıthbound	2017	5	1599	1789	1855	1939	2129	2025	1836	1974	1882	3.96	1.5	0.11 Axle Spacing Classification
rthbound	2017	6	1558	1776	1793	1804	1857	2012	1767	1818	1795	3	0.39	0 Axle Spacing Classification
ithbound	2017	6	1588	1901	1879	1879	1897	2045	1842	1885	1862	4.07	1.82	0.11 Axle Spacing Classification
rthbound	2017	7	1473	1823	1805	1774	1903	1941	1750	1827	1781	2.94	0.45	0 Axle Spacing Classificati
thbound	2017		1540	1853	1876	1956	2008	1978	1706	1947	1845	3.91	2.12	0.27 Axle Spacing Classificati
thbound	2017 2017	8	1458	1992 1859	1876 1856	1791 1867	1839 1861	1940 1974	1719 1768	1835	1802 1829	3.05 3.93	0.44	0 Axle Spacing Classificati
thbound thbound	2017	9	1616 1394	1859	1856	1867	1861	1974	1768	1861 1848	1829	2.83	0.51	0.22 Axle Spacing Classificati 0 Axle Spacing Classificati
thbound	2017	9	1425	1753	1841	1837	1865	2003	1788	1848	1758	3.94	1.83	0.17 Axle Spacing Classificat
thbound	2017	10	1350	1739	1848	1830	1858	1885	1615	1845	1732	2.96	0.46	0.17 Axie Spacing Classificat 0 Axle Spacing Classificat
thbound	2017	10	1301	1739	1865	1829	1833	1935	1614	1843	1732	3.93	1.68	0.23 Axle Spacing Classificati
thbound	2017	11	1200	1685	1686	1768	1637	1735	1431	1697	1592	3.13	0.38	0 Axle Spacing Classificat
thbound	2017	11	1205	1733	1749	1776	1669	1752	1460	1731	1621	4	1.78	0.18 Axle Spacing Classificat
thbound	2017	12	1213	1469	1606	1678	1651	1757	1468	1645	1549	2.66	0.39	0 Axle Spacing Classificati
thbound	2017	12	1207	1507	1639	1691	1669	1800	1487	1666	1571	3.84	1.47	0.13 Axle Spacing Classificati
thbound	2018	1	1198	1486	1631	1673	1673	1724	1405	1659	1541	2.85	0.45	0 Axle Spacing Classificati
thbound	2018	1	1181	1475	1714	1691	1700	1748	1400	1702	1558	3.93	1.54	0.19 Axle Spacing Classificati
thbound	2018	2	1170	1627	1672	1569	1671	1747	1496	1637	1565	2.84	0.44	0 Axle Spacing Classificati
uthhound	2018	2	1220	1731	1668	1527	1666	1877	1511	1620	1600	4.04	1.62	0.12 Ayle Spacing Classification

Southbound

Northbound

4.04

3.41

1.62

0.56

0.12 Axle Spacing Classification

0 Axle Spacing Classification

WSDOT Permanent Traffic Recorder - S819: On SR 411 at milepost 7.97 A: S/O SANDY BEND ROAD - LEXINGTON

•	2040		2020
January	2010 -	August	2020

WSDOT Perm	nanent Traffic Re	corder -	· S819: On SF	R 411 at mile	post 7.97 A: S/	O SANDY BEND	ROAD - LEX	INGTON					2010 - August 202	
TravelDirection	Year Month	AvgS	unday AvgN	Nonday Avg	Tuesday AvgWe	ednesday AvgTh	ursday Avg	Friday Ave	Saturday Avg	Wkday Av	gDay Sing	leUnitTruckPct DoubleUni	tTruckPct TripleUi	nitTruckPct VehicleClassificationType
Southbound	2018	3	1401	1832	1865	1873	1867	2251	1718	1868	1830	4.19	1.88	0.44 Axle Spacing Classification
Northbound	2018	4	1382	1860	1872	1922	1910	1965	1620	1901	1790	2.92	0.45	0.06 Axle Spacing Classification
Southbound	2018	4	1412	1892	1916	1926	1928	1961	1626	1923	1809	3.96	1.67	0.28 Axle Spacing Classification
Northbound	2018	5	1612	1828	1998	2007	1986	2086	1792	1997	1901	3.09	0.47	0 Axle Spacing Classification
Southbound	2018	5	1650	1873	2016	1992	2026	2094	1835	2011	1927	3.98	1.96	0.16 Axle Spacing Classification
Northbound	2018	6	1572	1895	1975	1988	1952	2086	1831	1972	1900	2.94	0.53	0 Axle Spacing Classification
Southbound	2018	6	1611	1942	1982	1973	1945	2097	1825	1967	1911	4.03	1.41	0.1 Axle Spacing Classification
	2018	7	1519	1913	1988	1945	1978	2075	1732	1970	1879	3.1	0.53	
Northbound		7			1988									0 Axle Spacing Classification
Southbound	2018		1543	1926		1941	1966	2061	1698	1968	1876	4.33	1.6	0.05 Axle Spacing Classification
Northbound	2018	8	1453	1870	1901	1904	1913	1962	1750	1906	1822	3.17	0.71	0 Axle Spacing Classification
Southbound	2018	8	1488	1917	1924	1925	1904	1996	1747	1918	1843	4.48	1.73	0.11 Axle Spacing Classification
Northbound	2018	9	1392	1736	1968	1929	1933	1994	1729	1943	1812	3.12	0.56	0 Axle Spacing Classification
Southbound	2018	9	1402	1787	1966	1944	1922	1997	1774	1944	1827	4.42	1.49	0.11 Axle Spacing Classification
Northbound	2018	10	1330	1832	1885	1945	1924	1977	1679	1918	1796	3.27	0.39	Axle Spacing Classification
Southbound	2018	10	1343	1884	1925	1962	1973	2012	1686	1953	1826	4.68	1.36	0.11 Axle Spacing Classification
Northbound	2018	11	1287	1693	1778	1820	1711	1804	1490	1770	1655	3.16	0.42	0 Axle Spacing Classification
Southbound	2018	11	1273	1741	1798	1842	1764	1839	1534	1801	1684	4.69	1.41	0.18 Axle Spacing Classification
Northbound	2018	12	1256	1684	1645	1738	1759	1847	1581	1714	1644	3.49	0.37	Axle Spacing Classification
Southbound	2018	12	1288	1723	1692	1791	1808	1854	1594	1764	1679	4.68	1.86	0.18 Axle Spacing Classification
Northbound	2019	1	1201	1624	1592	1694	1729	1813	1452	1672	1586	3.64	0.44	0 Axle Spacing Classification
Southbound	2019	1	1202	1689	1615	1742	1787	1839	1479	1715	1622	5.03	2.08	0.25 Axle Spacing Classification
Northbound	2019	2	1128	1459	1701	1749	1787	1781	1340	1746	1564	3.9	0.32	0 Axle Spacing Classification
Southbound	2019	2	1154	1489	1744	2254	1816	1842	1345	1938	1663	4.97	2.01	0.25 Axle Spacing Classification
Northbound	2019	3	1487	1809	1931	1926	1908	1909	1664	1922	1805	3.94	0.55	0 Axle Spacing Classification
Southbound	2019	3	1546	1895	1967	1937	1937	2010	1685	1947	1854	4.76	2.38	0.43 Axle Spacing Classification
Northbound	2019	4	1432	1857	1906	1928	1983	1983	1738	1939	1832	3.98	0.6	0.05 Axle Spacing Classification
		4					1981			1979	1870			
Southbound	2019		1442	1924	1954	2001		2023	1765			5.34	2.24	0.32 Axle Spacing Classification
Northbound	2019	5	1555	1821	1947	2010	2018	2098	1841	1992	1899	3.5	0.52	0 Axle Spacing Classification
Southbound	2019	5	1598	1870	1976	2014	2054	2105	1878	2015	1928	5.02	1.76	0.16 Axle Spacing Classification
Northbound	2019	6	1606	1935	2031	1988	1991	2117	1880	2003	1935	3.33	0.52	0 Axle Spacing Classification
Southbound	2019	6	1655	2035	2067	2037	2029	2129	1883	2044	1976	4.69	1.63	0.15 Axle Spacing Classification
Northbound	2019	7	1605	1945	1989	2078	1964	2086	1743	2010	1916	3.57	0.83	0 Axle Spacing Classification
Southbound	2019	7	1619	2015	2050	2047	1999	2121	1749	2032	1943	4.89	2.09	0.2 Axle Spacing Classification
Northbound	2019	8	1578	1961	2011	2039	2051	2099	1799	2034	1934	3.25	0.77	0.05 Axle Spacing Classification
Southbound	2019	8	1615	2042	2056	2030	2074	2157	1841	2053	1974	4.61	2.08	0.15 Axle Spacing Classification
Northbound	2019	9	1407	1846	2012	2065	2062	2121	1873	2046	1912	3.38	1.32	Axle Spacing Classification
Southbound	2019	9	1438	1917	2099	2127	2119	2204	1926	2115	1976	4.75	2.66	0.1 Axle Spacing Classification
Northbound	2019	10	1351	1851	1969	1978	2008	2075	1729	1985	1852	3.54	1.13	0 Axle Spacing Classification
Southbound	2019	10	1386	1921	1990	1982	2044	2115	1760	2005	1885	4.75	2.32	0.21 Axle Spacing Classification
Northbound	2019	11	1256	1845	1916	1974	1792	1955	1570	1894	1758	3.38	2.7	0.06 Axle Spacing Classification
Southbound	2019	11	1280	1886	1931	1954	1824	1992	1590	1903	1780	4.62	3.73	0.33 Axle Spacing Classification
Northbound	2019	12	1261	1818	1909	1755	1866	1913	1565	1843	1727	3.37	1.16	0.12 Axle Spacing Classification
Southbound	2019	12	1258	1890	1860	1766	1897	1933	1564	1841	1738	4.5	1.73	0.23 Axle Spacing Classification
Northbound	2020	1	1227	1791	1830	1714	1807	1880	1525	1784	1682	3.44	1.19	0.06 Axle Spacing Classification
Southbound	2020	1	1211	1777	1832	1706	1782	1896	1522	1773	1675	4.37	1.92	0.3 Axle Spacing Classification
Northbound	2020	2	1358	1794	1891	2157	1946	2107	1575	1998	1833	3.72	1.19	0.05 Axle Spacing Classification
Southbound	2020	2	1345	1799	1881	2100	1940	2139	1568	1974	1825	4.66	1.79	
Northbound	2020	3	1345	1603	1652	1761	1737	1715	1334	1974	1825	3.86	0.7	0.49 Axle Spacing Classification
	2020	3		1632	1652		1737		1334	1717	1577		1.57	0 Axle Spacing Classification
Southbound			1244			1777		1704				5.16		0.19 Axle Spacing Classification
Northbound	2020	4	1178	1514	1563	1557	1603	1641	1355	1574	1487	3.75	0.8	0 Axle Spacing Classification
Southbound	2020	4	1221	1544	1566	1554	1617	1637	1364	1579	1500	4.98	1.73	0.2 Axle Spacing Classification
Northbound	2020	5	1485	1578	1805	1823	1842	1968	1647	1823	1735	3.7	0.75	Axle Spacing Classification
Southbound	2020	5	1519	1655	1850	1813	1881	1997	1687	1848	1772	5.2	1.47	0.11 Axle Spacing Classification
Northbound	2020	6	1498	1845	1935	1961	1985	2048	1660	1960	1847	3.78	0.92	0 Axle Spacing Classification
Southbound	2020	6	1516	1899	1965	1974	2013	2071	1658	1984	1871	5.01	1.87	0.16 Axle Spacing Classification
Northbound	2020	7	1630	1932	2011	2044	1988	2083	1790	2014	1925	4.14	0.93	0 Axle Spacing Classification
Southbound	2020	7	1643	1959	2020	2024	2016	2119	1798	2020	1940	5.18	2.21	0.21 Axle Spacing Classification

APPENDIX B Level of Service Definitions & LOS Calculation Sheets

Levels of service (LOS) are qualitative descriptions of traffic operating conditions. These levels of service are designated with letters ranging from LOS A, which is indicative of good operating conditions with little or no delay, to LOS F, which is indicative of stop-and-go conditions with frequent and lengthy delays. Levels of service for this analysis were developed using procedures presented in the *Highway Capacity Manual, Sixth Edition* (Transportation Research Board, 2016).

Signalized Intersections

Level of service for signalized intersections is defined in terms of average delay for all vehicles that travel through the intersection. Delay can be a cause of driver discomfort, frustration, inefficient fuel consumption, and lost travel time. Specifically, level-of-service criteria are stated in terms of the average delay per vehicle in seconds. Delay is a complex measure and is dependent on a number of variables including: number and type of vehicles by movement, intersection lane geometry, signal phasing, the amount of green time allocated to each phase, transit stops and parking maneuvers. Table B-1 shows the level of service criteria for signalized intersections from the *Highway Capacity Manual, Sixth Edition*.

Table B-1. Level of Service for Signalized Intersections

Level of Service	Average Control Delay Per Vehicle
А	≤ 10 seconds
В	> 10 – 20 seconds
С	> 20 – 35 seconds
D	> 35 – 55 seconds
Е	> 55 – 80 seconds
F	> 80 seconds

Source: Transportation Research Board, Highway Capacity Manual, Exhibit 19.8, 2016.

Unsignalized Intersections

For unsignalized intersections, level of service is based on the average delay per vehicle for each turning movement. The level of service for all-way stop or roundabout-controlled intersections is based upon the average delay for all vehicles that travel through the intersection. The level of service for a one- or two-way, stop-controlled intersection, delay is related to the availability of gaps in the main street's traffic flow, and the ability of a driver to enter or pass through those gaps. Table B-2 shows the level of service criteria for unsignalized intersections from the *Highway Capacity Manual, Sixth Edition*.

Table B-2. Level of Service Criteria for Unsignalized Intersections

Level of Service	Average Control Delay per Vehicle
А	0 – 10 seconds
В	> 10 – 15 seconds
С	> 15 – 25 seconds
D	> 25 – 35 seconds
E	> 35 – 50 seconds
F	> 50 seconds

Source: Transportation Research Board, <u>Highway Capacity Manual</u>, Exhibit 20.2, 2016.

	_			_	-	_
	•	•	1	†	ţ	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ሻ	7	ሻ	↑	↑	7
Traffic Volume (vph)	68	107	29	141	554	219
Future Volume (vph)	68	107	29	141	554	219
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	1700	12	1700	12	1700	1700
Grade (%)	4%	12	111	0%	-1%	10
		0	200	0 70	-1/0	300
Storage Length (ft)	0	0				
Storage Lanes	1	1	1			1
Taper Length (ft)	50	1.00	50	1.00	1 00	1.00
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor						0.98
Frt		0.850				0.850
Flt Protected	0.950		0.950			
Satd. Flow (prot)	1710	1583	1694	1845	1765	1500
Flt Permitted	0.950		0.950			
Satd. Flow (perm)	1710	1583	1694	1845	1765	1465
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)		104				237
Link Speed (mph)	30			35	35	
Link Distance (ft)	315			1448	419	
Travel Time (s)	7.2			28.2	8.2	
Confl. Bikes (#/hr)		2		20.2	0.2	3
Peak Hour Factor	0.82	0.82	0.82	0.82	0.82	0.82
Heavy Vehicles (%)	0.02	0.02	3%	3%	1%	1%
Adj. Flow (vph)	83	130	35	172	676	267
Shared Lane Traffic (%)	03	130	აა	1/2	070	207
	0.2	120	ЭF	170	/7/	2/7
Lane Group Flow (vph)	83	130	35	172	676	267
Turn Type	Perm	pt+ov	Prot	NA	NA	Perm
Protected Phases		4 5	5	2	6	,
Permitted Phases	4		_			6
Detector Phase	4	4	5	2	6	6
Switch Phase						
Minimum Initial (s)	4.0		7.0	4.0	4.0	4.0
Minimum Split (s)	20.0		13.0	20.0	26.0	26.0
Total Split (s)	36.0		36.0	54.0	54.0	54.0
Total Split (%)	28.6%		28.6%	42.9%	42.9%	42.9%
Maximum Green (s)	30.0		30.0	48.0	48.0	48.0
Yellow Time (s)	4.0		4.0	4.0	4.0	4.0
All-Red Time (s)	2.0		2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0		6.0	6.0	6.0	6.0
Lead/Lag	0.0		Lead	0.0	Lag	Lag
Lead-Lag Optimize?			Yes		Yes	Yes
ŭ .	2.0			4.0		
Vehicle Extension (s)	3.0		3.0	4.0	4.0	4.0
Recall Mode	None		None	Min	Min	Min
Walk Time (s)					5.0	5.0
Flash Dont Walk (s)					15.0	15.0
Pedestrian Calls (#/hr)			_		0	0
Act Effct Green (s)	9.3	17.0	7.7	55.1	47.3	47.3

Kelso School District - Huntington MS Interim Site 7:00 am 10/29/2020 2020 Existing Conditions - AM Peak Heffron Transportation Inc. - ZDG

Lane Group EBL EBR NBL NBT SBT SBR Actuated g/C Ratio 0.12 0.22 0.10 0.72 0.62 0.62 v/c Ratio 0.40 0.30 0.20 0.13 0.62 0.27 Control Delay 39.0 9.1 37.9 3.7 14.4 2.7 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 39.0 9.1 37.9 3.7 14.4 2.7 LOS D A D A B A Approach Delay 20.8 9.5 11.1 A Approach LOS C A B A Queue Length 50th (ft) 39 9 17 20 216 6 Queue Length 95th (ft) 78 40 42 38 330 32 Internal Link Dist (ft) 235 1368 339 330 Turn Bay Length (ft)		۶	\rightarrow	1	†	ţ	4
v/c Ratio 0.40 0.30 0.20 0.13 0.62 0.27 Control Delay 39.0 9.1 37.9 3.7 14.4 2.7 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 39.0 9.1 37.9 3.7 14.4 2.7 LOS D A D A B A Approach Delay 20.8 P.5 11.1 A Approach LOS C A B A Queue Length 50th (ft) 39 9 17 20 216 6 Queue Length 95th (ft) 78 40 42 38 330 32 Internal Link Dist (ft) 235 1368 339 Turn Bay Length (ft) 200 300 Base Capacity (vph) 682 693 675 1825 1142 1031 Starvation Cap Reductn 0 0 0 0 0 0	Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Control Delay 39.0 9.1 37.9 3.7 14.4 2.7 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 39.0 9.1 37.9 3.7 14.4 2.7 LOS D A D A B A Approach Delay 20.8 P.5 11.1 A Approach LOS C A B A Queue Length 50th (ft) 39 9 17 20 216 6 Queue Length 95th (ft) 78 40 42 38 330 32 Internal Link Dist (ft) 235 1368 339 1 Turn Bay Length (ft) 200 300 Base Capacity (vph) 682 693 675 1825 1142 1031 Starvation Cap Reductn 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0	Actuated g/C Ratio	0.12	0.22	0.10	0.72	0.62	0.62
Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 39.0 9.1 37.9 3.7 14.4 2.7 LOS D A D A B A Approach Delay 20.8 P.5 11.1 A Approach LOS C A B B Queue Length 50th (ft) 39 9 17 20 216 6 Queue Length 95th (ft) 78 40 42 38 330 32 Internal Link Dist (ft) 235 1368 339 300 Base Capacity (vph) 682 693 675 1825 1142 1031 Starvation Cap Reductn 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0	v/c Ratio	0.40	0.30	0.20	0.13	0.62	0.27
Total Delay 39.0 9.1 37.9 3.7 14.4 2.7 LOS D A D A B A Approach Delay 20.8 9.5 11.1	Control Delay	39.0	9.1	37.9	3.7	14.4	2.7
LOS D A D A B A Approach Delay 20.8 9.5 11.1 Approach LOS C A B Oueue Length 50th (ft) 39 9 17 20 216 6 Oueue Length 95th (ft) 78 40 42 38 330 32 Internal Link Dist (ft) 235 1368 339 Turn Bay Length (ft) 200 300 Base Capacity (vph) 682 693 675 1825 1142 1031 Starvation Cap Reductn 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0	Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Approach Delay 20.8 9.5 11.1 Approach LOS C A B Queue Length 50th (ft) 39 9 17 20 216 6 Queue Length 95th (ft) 78 40 42 38 330 32 Internal Link Dist (ft) 235 1368 339 Turn Bay Length (ft) 200 300 Base Capacity (vph) 682 693 675 1825 1142 1031 Starvation Cap Reductn 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0	Total Delay	39.0	9.1	37.9	3.7	14.4	2.7
Approach LOS C A B Queue Length 50th (ft) 39 9 17 20 216 6 Queue Length 95th (ft) 78 40 42 38 330 32 Internal Link Dist (ft) 235 1368 339 1368 339 1300 Base Lapacity (vph) 682 693 675 1825 1142 1031 Starvation Cap Reductn 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0	LOS	D	Α	D	Α	В	Α
Oueue Length 50th (ft) 39 9 17 20 216 6 Queue Length 95th (ft) 78 40 42 38 330 32 Internal Link Dist (ft) 235 1368 339 300 Base Length (ft) 200 300 300 Base Capacity (vph) 682 693 675 1825 1142 1031 Starvation Cap Reductn 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0	Approach Delay	20.8			9.5	11.1	
Queue Length 95th (ft) 78 40 42 38 330 32 Internal Link Dist (ft) 235 1368 339 Turn Bay Length (ft) 200 300 Base Capacity (vph) 682 693 675 1825 1142 1031 Starvation Cap Reductn 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0	Approach LOS	С			Α	В	
Internal Link Dist (ft) 235 1368 339 Turn Bay Length (ft) 200 300 Base Capacity (vph) 682 693 675 1825 1142 1031 Starvation Cap Reductn 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0	Queue Length 50th (ft)	39	9	17	20	216	6
Turn Bay Length (ft) 200 300 Base Capacity (vph) 682 693 675 1825 1142 1031 Starvation Cap Reductn 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0	Queue Length 95th (ft)	78	40	42	38	330	32
Base Capacity (vph) 682 693 675 1825 1142 1031 Starvation Cap Reductn 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0	Internal Link Dist (ft)	235			1368	339	
Starvation Cap Reductn 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0	Turn Bay Length (ft)			200			300
Spillback Cap Reductn 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0	Base Capacity (vph)	682	693	675	1825	1142	1031
Storage Cap Reductn 0 0 0 0 0 0	Starvation Cap Reductn	0	0	0	0	0	0
	Spillback Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio 0.12 0.19 0.05 0.09 0.59 0.26	Storage Cap Reductn	0	0	0	0	0	0
	Reduced v/c Ratio	0.12	0.19	0.05	0.09	0.59	0.26

Area Type: Other

Cycle Length: 126

Actuated Cycle Length: 76.6

Natural Cycle: 65

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.62 Intersection Signal Delay: 12.4 Intersection Capacity Utilization 45.8%

Analysis Period (min) 15 Description: From TMC Intersection LOS: B ICU Level of Service A

Splits and Phases: 1: NW 1st Av

-						
Intersection						
Int Delay, s/veh	0.5					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	†	בטוג	VVDL	<u>₩Ы</u>	₩.	INDIN
Traffic Vol, veh/h	160	0	10	232	5	10
Future Vol, veh/h	160	0	10	232	5	10
Conflicting Peds, #/hr	0	1	1	0	0	0
· ·	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	- -	None
Storage Length	_	100	_	-	0	-
Veh in Median Storage,	# 0	-	_	0	0	_
Grade, %	0	_	_	0	0	_
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	0	0	0	0	0	0
Mvmt Flow	174	0	11	252	5	11
IVIVIIIL I IOVV	1/4	U		232	J	
	ajor1		Major2		Minor1	
Conflicting Flow All	0	0	175	0	449	88
Stage 1	-	-	-	-	175	-
Stage 2	-	-	-	-	274	-
Critical Hdwy	-	-	4.1	-	6.6	6.9
Critical Hdwy Stg 1	-	-	-	-	5.8	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	-	-	2.2	-	3.5	3.3
Pot Cap-1 Maneuver	-	-	1414	-	557	959
Stage 1	-	-	-	-	844	-
Stage 2	-	-	-	-	777	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1413	-	551	958
Mov Cap-2 Maneuver	-	-	-	-	551	-
Stage 1	_	-	_	-	843	_
Stage 2	_	_	_	_	770	_
3						
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.3		9.8	
HCM LOS	U		0.5		7.0 A	
HOWI LOG						
Minor Lane/Major Mvmt	ľ	NBLn1	EBT	FRR	WBL	WBT
Capacity (veh/h)		769	LDI			WD1
HCM Lane V/C Ratio		0.021	-	-	0.008	-
		9.8	-	-	7.6	_
HCM Control Delay (s) HCM Lane LOS		9.8 A	-	-	7.6 A	0 A
HCM 95th %tile Q(veh)		0.1	-	-	A 0	А
HOW FOUT WITH Q(VEH)		U. I	-	-	U	-

Intersection												
Int Delay, s/veh	17.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4	7		4			4	
Traffic Vol, veh/h	4	14	8	190	9	26	1	71	61	90	275	2
Future Vol, veh/h	4	14	8	190	9	26	1	71	61	90	275	2
Conflicting Peds, #/hr	0	0	0	0	0	0	1	0	0	0	0	1
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free		Free	Free
RT Channelized	- -	- -	None	- -	- -	None	-	-	None	-	-	None
Storage Length	_	-	-	-	-	100	-	_	-	_	_	-
Veh in Median Storage	e. # -	0	-	-	0	-	-	0	_	_	0	_
Grade, %	-	0	-	-	0	-	-	0	_	_	0	_
Peak Hour Factor	72	72	72	75	75	75	79	79	79	83	83	83
Heavy Vehicles, %	4	4	4	1	1	1	2	2	2		1	1
Mvmt Flow	6	19	11	253	12	35	1	90	77	108	331	2
	3	. ,	• •	_00		00	•	, 5	.,	.00	551	_
Major/Minor	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	703	718	333	694	681	129	334	0	0		0	0
Stage 1	549	549	-	131	131	127	334	0	0	107	Ū	-
Stage 2	154	169	_	563	550					_		
Critical Hdwy	7.14	6.54	6.24	7.11	6.51	6.21	4.12			4.11		
Critical Hdwy Stg 1	6.14	5.54	0.24	6.11	5.51	0.21	4.12			4.11		
Critical Hdwy Stg 2	6.14	5.54	-	6.11	5.51	-	-	-	-	-	-	-
Follow-up Hdwy	3.536	4.036	3.336	3.509	4.009	3.309	2.218	-	-	2.209	-	-
Pot Cap-1 Maneuver	350	352	704	359	374	924	1225	-	-	1417	-	-
Stage 1	516	513	704	875	790	724	1223	-	-	1417	-	-
Stage 2	844	755	-	513	517	-	-	-	-	-	-	-
Platoon blocked, %	044	755	-	313	317	-	-	-	-	-	-	-
Mov Cap-1 Maneuver	304	318	703	313	338	924	1224	-	-	1417	-	-
Mov Cap-1 Maneuver	304	318	703	313	338	724	1224	-	-	141/	-	-
Stage 1	515	464		874	338 789	-	-	-	-	-	-	-
Stage 1 Stage 2	799	754	-	438	468	-	-	-	-	-	-	-
Staye 2	177	734	-	430	400	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	15.5			50.8			0.1			1.9		
HCM LOS	15.5 C			50.6 F			U. I			1.7		
LICINI EOS	C			Г								
Minor Lane/Major Mvn	nt	NBL	NBT	NRR	FBI n1\	WBLn1\	NBI n2	SBL	SBT	SBR		
Capacity (veh/h)		1224	- 1101	- INDIX	379	314	924	1417		- OBIT		
HCM Lane V/C Ratio		0.001	-	-		0.845			-	-		
HCM Control Delay (s)	١	7.9	0	-	15.5	56.3	9	7.8	0	-		
HCM Lane LOS	1	7.9 A	A	-	13.5 C	50.5 F	A	7.0 A	A	-		
HCM 95th %tile Q(veh)	0	А	-	0.3	7.4	0.1	0.2	А	-		
HOW FOUT FOUTE CELVETT	'/	U	-	-	0.3	7.4	0.1	0.2	-	-		

·						
Intersection						
Int Delay, s/veh	0.3					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	₩ W	LDIN	NDL	4 †	↑	JUK
Traffic Vol, veh/h	T 5	10	5	4 T 160	665	5
Future Vol, veh/h	5	10	5	160	665	5
Conflicting Peds, #/hr	0	0	2	0	005	2
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	Stop	None	riee	None		None
	-		-		-	100
Storage Length	0	-	-	-	-	100
Veh in Median Storage		-	-	0	0	-
Grade, %	1	-	-	1	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	5	11	5	174	723	5
Major/Minor	Minor2	ľ	Major1	N	Major2	
Conflicting Flow All	825	366	730	0		0
Stage 1	728	-	750	-	_	-
Stage 2	97					
Critical Hdwy	7.04	7.04	4.14	_	_	_
Critical Hdwy Stg 1	6.04	7.04	4.14	-	-	-
	6.04	-	-	-	-	-
Critical Hdwy Stg 2	3.52	3.32	2.22	-	-	-
Follow-up Hdwy		3.32 625	870	-	-	-
Pot Cap-1 Maneuver	297	020	870	-	-	-
Stage 1	421	-	-	-	-	-
Stage 2	911	-	-	-	-	-
Platoon blocked, %	00.1	/01	0.40	-	-	-
Mov Cap-1 Maneuver		624	868	-	-	-
Mov Cap-2 Maneuver	294	-	-	-	-	-
Stage 1	418	-	-	-	-	-
Stage 2	909	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s			0.3		0	
HCM LOS	13.2 B		0.5		U	
HOW LOS	ט					
				ED. 1	05-	055
Minor Lane/Major Mvn	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		868	-	454	-	-
HCM Lane V/C Ratio		0.006	-	0.036	-	-
HCM Control Delay (s))	9.2	0	13.2	-	-
HCM Lane LOS		Α	Α	В	-	-
HCM 95th %tile Q(veh	1)	0	-	0.1	-	-
•						

	•	→	+	•	/	✓			
Movement	EBL	EBT	WBT	WBR	SBL	SBR			
Lane Configurations Traffic Volume (veh/h) Future Volume (Veh/h) Sign Control Grade	0	371 371 371 Free 0%	↑↑ 453 453 Free -1%	5 5	0 0 Stop 0%	1 5 15			
Peak Hour Factor Hourly flow rate (vph) Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh)	0.92	0.92 403	0.92 492	0.92 5	0.92	0.92 16			
Median type Median storage veh)		None	None						
Upstream signal (ft) pX, platoon unblocked vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol	0.96 497		256		0.96 595	0.96 248			
vCu, unblocked vol tC, single (s) tC, 2 stage (s)	384 4.1				486 6.8	124 6.9			
tF (s) p0 queue free % cM capacity (veh/h)	2.2 100 1121				3.5 100 488	3.3 98 864			
Direction, Lane #	EB 1	EB 2	EB 3	EB 4	WB 1	WB 2	SB 1		
Volume Total Volume Left Volume Right cSH	101 0 0 1700	101 0 0 1700	101 0 0 1700	101 0 0 1700	328 0 0 1700	169 0 5 1700	16 0 16 864		
Volume to Capacity Queue Length 95th (ft) Control Delay (s)	0.06 0 0.0	0.06 0 0.0	0.06 0 0.0	0.06 0 0.0	0.19 0 0.0	0.10 0 0.0	0.02 1 9.2		
Lane LOS Approach Delay (s) Approach LOS	0.0				0.0		A 9.2 A		
Intersection Summary Average Delay Intersection Capacity Utiliza Analysis Period (min)	ition		0.2 22.7% 15	IC	CU Level (of Service		A	

	۶	•	1	†	+	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	<u> </u>	7	<u> </u>	<u> </u>	<u> </u>	7
Traffic Volume (vph)	298	55	67	580	428	162
Future Volume (vph)	298	55	67	580	428	162
	1900	1900	1900	1900	1900	1900
Ideal Flow (vphpl)						
Lane Width (ft)	11	12	11	12	10	10
Grade (%)	4%	0	000	0%	-1%	000
Storage Length (ft)	0	0	200			300
Storage Lanes	1	1	1			1
Taper Length (ft)	50		50			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor			1.00			0.97
Frt		0.850				0.850
Flt Protected	0.950		0.950			
Satd. Flow (prot)	1710	1583	1745	1900	1765	1500
Flt Permitted	0.950		0.950			
Satd. Flow (perm)	1710	1583	1739	1900	1765	1459
Right Turn on Red	1710	Yes	1737	1 /00	1703	Yes
Satd. Flow (RTOR)		57				169
	20	37		25)E	109
Link Speed (mph)	30			35	35	
Link Distance (ft)	315			1448	419	
Travel Time (s)	7.2			28.2	8.2	
Confl. Peds. (#/hr)			2			2
Confl. Bikes (#/hr)		2				1
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96
Heavy Vehicles (%)	0%	0%	0%	0%	1%	1%
Adj. Flow (vph)	310	57	70	604	446	169
Shared Lane Traffic (%)						
Lane Group Flow (vph)	310	57	70	604	446	169
Turn Type	Perm	pt+ov	Prot	NA	NA	Perm
Protected Phases		4 5	5	2	6	. 0
Permitted Phases	4	7 0	0	2	O	6
Detector Phase	4	4	5	2	6	6
	4	4	5	Z	Ü	Ü
Switch Phase	4.0		7.0	4.0	4.0	4.0
Minimum Initial (s)	4.0		7.0	4.0	4.0	4.0
Minimum Split (s)	20.0		13.0	20.0	26.0	26.0
Total Split (s)	36.0		36.0	54.0	54.0	54.0
Total Split (%)	28.6%		28.6%	42.9%	42.9%	42.9%
Maximum Green (s)	30.0		30.0	48.0	48.0	48.0
Yellow Time (s)	4.0		4.0	4.0	4.0	4.0
All-Red Time (s)	2.0		2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0		6.0	6.0	6.0	6.0
Lead/Lag	0.0		Lead	0.0	Lag	Lag
Lead-Lag Optimize?			Yes		Yes	Yes
.	3.0		3.0	4.0	4.0	
Vehicle Extension (s)				4.0		4.0
Recall Mode	None		None	Min	Min	Min
Walk Time (s)					5.0	5.0
Flash Dont Walk (s)					15.0	15.0
Pedestrian Calls (#/hr)					0	0

Kelso School District - Huntington MS Interim Site 3:00 pm 10/29/2020 2020 Existing Conditions - Afternoon Peak Heffron Transportation Inc. - ZDG

	۶	•	•	†	ļ	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Act Effct Green (s)	20.8	32.5	9.7	41.0	29.3	29.3
Actuated g/C Ratio	0.28	0.43	0.13	0.55	0.39	0.39
v/c Ratio	0.65	0.08	0.31	0.58	0.65	0.25
Control Delay	34.1	4.3	40.0	13.8	26.0	4.3
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	34.1	4.3	40.0	13.8	26.0	4.3
LOS	С	Α	D	В	С	Α
Approach Delay	29.5			16.5	20.0	
Approach LOS	С			В	С	
Queue Length 50th (ft)	129	0	31	163	172	0
Queue Length 95th (ft)	273	21	87	316	337	40
Internal Link Dist (ft)	235			1368	339	
Turn Bay Length (ft)			200			300
Base Capacity (vph)	749	842	765	1810	1196	1043
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.41	0.07	0.09	0.33	0.37	0.16
Intersection Summary						

Area Type: Other

Cycle Length: 126

Actuated Cycle Length: 74.9

Natural Cycle: 60

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.65 Intersection Signal Delay: 20.7 Intersection Capacity Utilization 59.9%

Analysis Period (min) 15 Description: From TMC

Intersection LOS: C ICU Level of Service B

Splits and Phases: 1: NW 1st Av

-						
Intersection						
Int Delay, s/veh	0.4					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	↑	LDIV	VVDL	्र	NDL W	NDI
Traffic Vol, veh/h	T → 314	5	10	4 216	'T' 5	10
Future Vol, veh/h	314	5 5	10	216	5 5	10
Conflicting Peds, #/hr	0	2	2	0	0	0
Sign Control	Free	Free	Free	Free	Stop	
RT Channelized	riee -	None		None	•	Stop None
			-		-	None
Storage Length	- 4 0	100	-	-	0	-
Veh in Median Storage,		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	0	0	0	0	0	0
Mvmt Flow	341	5	11	235	5	11
Major/Minor N	/lajor1	N	Major2	1	Minor1	
Conflicting Flow All	0	0	348	0	603	175
Stage 1	-	-	J+0 -	-	346	-
Stage 2	_	_	_	_	257	-
Critical Hdwy	-	-	4.1		6.6	6.9
Critical Hdwy Stg 1	-	-	4.1	-	5.8	
3 0	-	-	-	-		-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	-	-	2.2	-	3.5	3.3
Pot Cap-1 Maneuver	-	-	1222	-	450	844
Stage 1	-	-	-	-	694	-
Stage 2	-	-	-	-	791	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1220	-	445	843
Mov Cap-2 Maneuver	-	-	-	-	445	-
Stage 1	-	-	-	-	693	-
Stage 2	-	-	-	-	783	-
J						
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.4		10.7	
HCM LOS	U		0.4		10.7 B	
HOW LUS					В	
Minor Lane/Major Mvmt	t <u> </u>	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		649	-	-	1220	-
HCM Lane V/C Ratio		0.025	-	-	0.009	-
HCM Control Delay (s)		10.7	_	-	8	0
HCM Lane LOS		В	_	-	A	Ā
HCM 95th %tile Q(veh)		0.1	_	-	0	-
					,	

Intersection													
Int Delay, s/veh	6.2												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4			र्स	7		4			4		
Traffic Vol, veh/h	6	13	8	158	13	59	12	218	251	33	166	2	
Future Vol, veh/h	6	13	8	158	13	59	12	218	251	33	166	2	
Conflicting Peds, #/hr	0	0	6	6	0	0	0	0	3	3	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized			None		-	None	-	-	None	-	-	None	
Storage Length	_	-	-	-	_	100	_	_	-	_	_	-	
Veh in Median Storage	.# -	0	_	_	0	_	_	0	_	_	0	-	
Grade, %	-	0	-	-	0	_	-	0	-	_	0	-	
Peak Hour Factor	91	91	91	100	100	100	89	89	89	84	84	84	
Heavy Vehicles, %	0	0	0	0	0	0	0	0	0	1	1	1	
Mvmt Flow	7	14	9	158	13	59	13	245	282	39	198	2	
Major/Minor N	Minor2		N	/linor1		ı	Major1			Major2			
Conflicting Flow All	725	833	205	710	693	389	200	0	0	530	0	0	
Stage 1	277	277	-	415	415	-	-	-	-	-	-	-	
Stage 2	448	556	_	295	278	_	_	_	_	_	_	_	
Critical Hdwy	7.1	6.5	6.2	7.1	6.5	6.2	4.1	_	_	4.11	_	_	
Critical Hdwy Stg 1	6.1	5.5	-	6.1	5.5	-	-	_	_	-	_	-	
Critical Hdwy Stg 2	6.1	5.5	_	6.1	5.5	_	_	_	_	_	_	_	
Follow-up Hdwy	3.5	4	3.3	3.5	4	3.3	2.2	_	_	2.209	_	-	
Pot Cap-1 Maneuver	343	307	841	351	369	664	1384	_	_	1042	_	-	
Stage 1	734	685	-	619	596	-	-	-	-	_	_	-	
Stage 2	594	516	_	718	684	_	_	_	-	_	_	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	291	290	835	317	348	662	1384	-	-	1040	-	-	
Mov Cap-2 Maneuver	291	290	-	317	348	-	-	-	-	-	-	-	
Stage 1	724	656	-	609	586	-	-	-	-	-	-	-	
Stage 2	522	508	-	661	655	-	-	-	-	-	-	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	15.9			24.1			0.2			1.4			
HCM LOS	С			С									
Minor Lane/Major Mvm	ıt	NBL	NBT	NBR I	EBLn1\	WBLn1V	VBLn2	SBL	SBT	SBR			
Capacity (veh/h)		1384		-	360	319	662	1040	-	-			
HCM Lane V/C Ratio		0.01	_	_		0.536			_	_			
HCM Control Delay (s)		7.6	0	_	15.9	28.6	11	8.6	0	_			
HCM Lane LOS		Α.	A	_	C	20.0 D	В	Α	A	_			
HCM 95th %tile Q(veh))	0	-	_	0.3	3	0.3	0.1	-	_			
2 12 70 2(1011)	•	J			3.3	J	3.3	J					

-						
Intersection						
Int Delay, s/veh	0.4					
-		EDD	NIDI	NDT	CDT	CDD
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y	-	10	₹ ↑	↑ }	4.5
Traffic Vol, veh/h	15	5	10	628	453	15
Future Vol, veh/h	15	5	10	628	453	15
Conflicting Peds, #/hr	0	0	_ 5	_ 0	_ 0	_ 5
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	100
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	1	-	-	1	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	0	0	2	2	2	2
Mvmt Flow	16	5	11	683	492	16
Major/Miner	Minora	n	Anior1	ĸ	Anior2	
	Minor2		Major1		Major2	
Conflicting Flow All	869	259	513	0	-	0
Stage 1	505	-	-	-	-	-
Stage 2	364	-	-	-	-	-
Critical Hdwy	7	7	4.14	-	-	-
Critical Hdwy Stg 1	6	-	-	-	-	-
Critical Hdwy Stg 2	6	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	2.22	-	-	-
Pot Cap-1 Maneuver	281	741	1049	-	-	-
Stage 1	561	-	-	-	-	-
Stage 2	666	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	273	737	1044	-	-	-
Mov Cap-2 Maneuver	273	-	_	-	_	_
Stage 1	549	_	_	_	_	_
Stage 2	663	_	_	_	_	_
Jugo 2	505					
Annroach	ГD		ND		CD	
Approach	EB		NB		SB	
HCM Control Delay, s	16.9		0.2		0	
HCM LOS	С					
Minor Lane/Major Mvn	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1044	-	324	-	_
HCM Lane V/C Ratio		0.01	_	0.067	_	_
HCM Control Delay (s))	8.5	0.1	16.9	_	_
HCM Lane LOS	•	A	A	C	_	_
HCM 95th %tile Q(veh)	0	-	0.2	_	_
115W 70W 70W Q(VOII	7	U		٥.۷		

Intersection						
Int Delay, s/veh	0					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		ተተተ	∱ %			7
Traffic Vol, veh/h	0	618	495	15	0	5
Future Vol, veh/h	0	618	495	15	0	5
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	30	-	-	-	-	0
Veh in Median Storage,	, # -	0	0	-	0	-
Grade, %	-	0	-1	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	672	538	16	0	5
Major/Minor N	/lajor1	ľ	Major2	N	/linor2	
Conflicting Flow All	-	0	viajoi z	0	-	277
Stage 1	_	-	_	-	_	211
Stage 2			_			
Critical Hdwy			_			6.94
Critical Hdwy Stg 1		_		_		0.74
Critical Hdwy Stg 2		_		_		
Follow-up Hdwy					_	3.32
Pot Cap-1 Maneuver	0	-	_	_	0	720
Stage 1	0	-	-	-	0	120
Stage 2	0	-	-	-	0	-
Platoon blocked, %	U	-	-	-	U	-
Mov Cap-1 Maneuver		-	-	-		720
	-	-	-	-	-	720
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	EB		WB		SB	
HCM Control Delay, s	0		0		10	
HCM LOS					В	
Minor Lane/Major Mvmi	t	EBT	WBT	WBR S	SBLn1	
Capacity (veh/h)		_	-	-	720	
HCM Lane V/C Ratio		_	_	_	0.008	
HCM Control Delay (s)		_	_	_	10	
HCM Lane LOS		_	_	_	В	
HCM 95th %tile Q(veh)		-	-	_	0	
(- /						

	٠	•	1	†	ţ	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ሻ	7	*	↑	↑	7
Traffic Volume (vph)	69	109	29	144	565	224
Future Volume (vph)	69	109	29	144	565	224
	1900	1900	1900	1900	1900	1900
Ideal Flow (vphpl)						
Lane Width (ft)	11	12	11	12	10	10
Grade (%)	4%	0	000	0%	-1%	000
Storage Length (ft)	0	0	200			300
Storage Lanes	1	1	1			1
Taper Length (ft)	50		50			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor						0.98
Frt		0.850				0.850
Flt Protected	0.950		0.950			
Satd. Flow (prot)	1710	1583	1694	1845	1765	1500
Flt Permitted	0.950		0.950			
Satd. Flow (perm)	1710	1583	1694	1845	1765	1465
Right Turn on Red	7710	Yes	1071	.010	.,00	Yes
Satd. Flow (RTOR)		99				238
Link Speed (mph)	25	77		35	35	230
Link Distance (ft)	315			1448	419	
Travel Time (s)	8.6	_		28.2	8.2	•
Confl. Bikes (#/hr)	2.22	2	6.00	0.00	0.00	3
Peak Hour Factor	0.82	0.82	0.82	0.82	0.82	0.82
Heavy Vehicles (%)	0%	0%	3%	3%	1%	1%
Adj. Flow (vph)	84	133	35	176	689	273
Shared Lane Traffic (%)						
Lane Group Flow (vph)	84	133	35	176	689	273
Turn Type	Perm	pt+ov	Prot	NA	NA	Perm
Protected Phases		45	5	2	6	
Permitted Phases	4					6
Detector Phase	4	4	5	2	6	6
Switch Phase	,		3	_	0	0
Minimum Initial (s)	4.0		7.0	4.0	4.0	4.0
Minimum Split (s)			13.0		26.0	
	20.0			20.0 54.0		26.0 54.0
Total Split (s)	36.0		36.0		54.0	54.0
Total Split (%)	28.6%		28.6%	42.9%	42.9%	42.9%
Maximum Green (s)	30.0		30.0	48.0	48.0	48.0
Yellow Time (s)	4.0		4.0	4.0	4.0	4.0
All-Red Time (s)	2.0		2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0		6.0	6.0	6.0	6.0
Lead/Lag			Lead		Lag	Lag
Lead-Lag Optimize?			Yes		Yes	Yes
Vehicle Extension (s)	3.0		3.0	4.0	4.0	4.0
Recall Mode	None		None	Min	Min	Min
Walk Time (s)					5.0	5.0
Flash Dont Walk (s)					15.0	15.0
Pedestrian Calls (#/hr)					0	0
	0.4	17.0	77	E7 2		
Act Effct Green (s)	9.4	17.2	7.7	57.2	49.3	49.3

Kelso School District - Huntington MS Interim Site 7:00 am $10/29/2022\ 2022\ Without$ -Proj - AM Peak Heffron Transportation Inc. - ZDG

	۶	\rightarrow	1	†	ţ	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Actuated g/C Ratio	0.12	0.22	0.10	0.73	0.63	0.63
v/c Ratio	0.41	0.31	0.21	0.13	0.62	0.27
Control Delay	39.8	10.0	38.4	3.7	14.5	2.8
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	39.8	10.0	38.4	3.7	14.5	2.8
LOS	D	Α	D	Α	В	Α
Approach Delay	21.5			9.5	11.2	
Approach LOS	С			Α	В	
Queue Length 50th (ft)	41	13	17	21	224	7
Queue Length 95th (ft)	78	44	42	39	341	34
Internal Link Dist (ft)	235			1368	339	
Turn Bay Length (ft)			200			300
Base Capacity (vph)	660	672	654	1824	1132	1025
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.13	0.20	0.05	0.10	0.61	0.27
Indones allow Comments						

Area Type: Other

Cycle Length: 126

Actuated Cycle Length: 78.7

Natural Cycle: 65

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.62 Intersection Signal Delay: 12.5 Intersection Capacity Utilization 46.5%

Analysis Period (min) 15 Description: From TMC Intersection LOS: B ICU Level of Service A

Splits and Phases: 1: NW 1st Av & Fishers Ln

•						
Intersection						
Int Delay, s/veh	0.5					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	↑	LDIV	VVDL	्र	NDL Y	NDI
Traffic Vol, veh/h	TP 163	0	11	236	'T' 5	11
Future Vol, veh/h	163	0	11	236	5 5	11
	0	1	11			0
Conflicting Peds, #/hr				0 Eroo	0 Stop	
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length		100	-	-	0	-
Veh in Median Storage,		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	0	0	0	0	0	0
Mvmt Flow	177	0	12	257	5	12
Major/Minor M	lajor1	N	Major2	ı	Minor1	
Conflicting Flow All	0	0	178	0	459	90
Stage 1	-	-	170	-	178	-
Stage 2	-	-	-	-	281	-
Critical Hdwy	-	-	4.1	-	6.6	6.9
	-	-	4.1	-		
Critical Hdwy Stg 1	-	-	-	-	5.8	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	-	-	2.2	-	3.5	3.3
Pot Cap-1 Maneuver	-	-	1410	-	550	956
Stage 1	-	-	-	-	841	-
Stage 2	-	-	-	-	771	-
Platoon blocked, %	-	-	4 4	-		
Mov Cap-1 Maneuver	-	-	1409	-	544	955
Mov Cap-2 Maneuver	-	-	-	-	544	-
Stage 1	-	-	-	-	840	-
Stage 2	-	-	-	-	763	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.3		9.8	
HCM LOS	U		0.5		7.0 A	
HOW LOS						
NAN- and an alfan all and		UDI 4	FDT	EDD	MD	WET
Minor Lane/Major Mvmt	1	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		773	-	-	1409	-
HCM Lane V/C Ratio		0.022	-	-	0.008	-
HCM Control Delay (s)		9.8	-	-	7.6	0
HCM Lane LOS		Α	-	-	Α	Α
HCM 95th %tile Q(veh)		0.1	-	-	0	-

ntersection													
nt Delay, s/veh	19.9												
vement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
e Configurations		4			र्स	7		4			4		
fic Vol, veh/h	4	15	8	193	9	26	1	73	62	91	281	2	
re Vol, veh/h	4	15	8	193	9	26	1	73	62	91	281	2	
flicting Peds, #/hr	0	0	0	0	0	0	1	0	0	0	0	1	
Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
hannelized			None	-		None	-	-	None	-	-	None	
ge Length	-	-	-	-	-	100	-	-	-	-	-	-	
in Median Storage	2,# -	0	-	-	0	-	-	0	-	-	0	-	
e, %	-	0	-	-	0	-	-	0	-	-	0	-	
Hour Factor	72	72	72	75	75	75	79	79	79	83	83	83	
y Vehicles, %	4	4	4	1	1	1	2	2	2	1	1	1	
Flow	6	21	11	257	12	35	1	92	78	110	339	2	
r/Minor	Minor2		1	Minor1			Major1			Major2			
licting Flow All	718	733	341	709	695	131	342	0	0	170	0	0	
Stage 1	561	561	-	133	133	-	-	-	-	-	-	-	
Stage 2	157	172	_	576	562	_	_	_	_	_	_	_	
al Hdwy	7.14	6.54	6.24	7.11	6.51	6.21	4.12	_	_	4.11	_	_	
al Hdwy Stg 1	6.14	5.54	-	6.11	5.51	-	-	_	_	-	_	_	
al Hdwy Stg 2	6.14	5.54	_	6.11	5.51	_	_	_	_	_	_	_	
w-up Hdwy	3.536	4.036	3.336	3.509	4.009	3.309	2.218	_	_	2.209	_	_	
Cap-1 Maneuver	342	345	697	350	367	921	1217	_	-	1413	_	_	
Stage 1	509	507	_	873	788	-	-	-	-	_	_	_	
Stage 2	841	753	-	504	511	-	-	-	-	_	-	_	
on blocked, %								_	-		-	-	
Cap-1 Maneuver	296	311	696	303	331	921	1216	-	-	1413	-	-	
Cap-2 Maneuver	296	311	-	303	331	-	-	-	-	-	-	-	
Stage 1	508	458	-	872	787	-	-	-	-	-	-	-	
Stage 2	796	752	-	428	461	-	-	-	-	-	-	-	
roach	EB			WB			NB			SB			
// Control Delay, s	15.9			58.2			0.1			1.9			
1 LOS	С			F									
or Lane/Major Mvn	nt	NBL	NBT	MRD	FRI n1\	WBLn1\	MRI n2	SBL	SBT	SBR			
	π	1216	INDI	NUN	369	304	921	1413	201	JUIN			
acity (veh/h) I Lane V/C Ratio		0.001	-	-		0.886			-	-			
1 Cane V/C Railo 1 Control Delay (s)			0	-	15.9	64.5	9.1	7.8	0	-			
A Lane LOS	1	8 A	A	-	15.9 C	04.5 F	9.1 A	7.8 A	A	-			
// Larie LOS // 95th %tile Q(veh)	0	Α .	-	0.3	г 8.1	0.1	0.3	А	-			
11 70th 70the Q(VEH	,	U	-	-	0.5	0.1	0.1	0.5	-	-			

Intersection						
Int Delay, s/veh	0.3					
,					05=	055
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W			₽₽	∱ ⊅	
Traffic Vol, veh/h	5	11	5	163	678	5
Future Vol, veh/h	5	11	5	163	678	5
Conflicting Peds, #/hr	0	0	2	0	0	2
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	'-	None	_	None	_	None
Storage Length	0	_	_	_	_	100
Veh in Median Storage		_	_	0	0	-
Grade, %	., ,, 0 1	_	_	1	0	_
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	5	12	5	177	737	5
Major/Minor	Minor2	N	/lajor1	٨	/lajor2	
Conflicting Flow All	841	373	744	0		0
Stage 1	742	373	, , , ,	-	_	-
Stage 2	99					
	7.04	7.04	111	-	-	-
Critical Hdwy		7.04	4.14	-	-	-
Critical Hdwy Stg 1	6.04	-	-	-	-	-
Critical Hdwy Stg 2	6.04	-	-	-	-	-
Follow-up Hdwy	3.52	3.32	2.22	-	-	-
Pot Cap-1 Maneuver	290	618	859	-	-	-
Stage 1	414	-	-	-	-	-
Stage 2	909	-	-	-	-	-
Platoon blocked, %				_	-	_
Mov Cap-1 Maneuver	287	617	857	_	-	_
Mov Cap-2 Maneuver	287	-		_	_	_
Stage 1	411	_	-	_	_	_
Stage 2	907	-	-	-	-	-
Staye 2	707	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	13.2		0.3		0	
HCM LOS	В				_	
	,					
Minor Lane/Major Mvm	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)	-	857	-	454	-	
HCM Lane V/C Ratio		0.006	-		-	_
HCM Control Delay (s)		9.2	0	13.2	_	_
HCM Lane LOS		A	Ā	В	_	_
HCM 95th %tile Q(veh))	0		0.1	_	_
	,	J		5.1		

Intersection						
Int Delay, s/veh	0.2					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	LDL	^	↑	4 4 DIX	JDL	JDIK **
Traffic Vol, veh/h	0	378	462	5	0	16
Future Vol, veh/h	0	378	462	5	0	16
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	310p -	None
	30	None -		None -	-	0
Storage Length			-			
Veh in Median Storage		0	0	-	0	-
Grade, %	-	0	-1	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	411	502	5	0	17
Major/Minor	Major1		Major2	N	Minor2	
	iviajoi i		viajoiz			25.4
Conflicting Flow All	-	0	-	0	-	254
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	-	-	-	-	6.94
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-	-	3.32
Pot Cap-1 Maneuver	0	-	-	-	0	745
Stage 1	0	-	-	-	0	-
Stage 2	0	_	_	_	0	_
Platoon blocked, %		_	_	_		
Mov Cap-1 Maneuver	_	_	_	_	_	745
Mov Cap-1 Maneuver	_	_		_	_	, TJ
•	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	EB		WB		SB	
HCM Control Delay, s	0		0		9.9	
HCM LOS	J		3		A	
TIOWI LOO					, (
Minor Lane/Major Mvm	nt	EBT	WBT	WBR S	SBLn1	
Capacity (veh/h)		-	_	-	745	
HCM Lane V/C Ratio		-	-	_	0.023	
HCM Control Delay (s))	_	_	_	9.9	
HCM Lane LOS		_	_	_	A	
HCM 95th %tile Q(veh)	_	_	_	0.1	
1.5W 70W 70W Q(VCII	,				0.1	

					_	
	•	•	1	†	↓	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ሻ	7	ሻ	†	†	7
Traffic Volume (vph)	304	56	68	592	436	165
Future Volume (vph)	304	56	68	592	436	165
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	1700	1700	1700	1700	1700	1700
* *	4%	12	- 11	0%	-1%	10
Grade (%)		0	200	0%	-170	200
Storage Length (ft)	0	0	200			300
Storage Lanes	1	1	1			1
Taper Length (ft)	50		50			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor			1.00			0.97
Frt		0.850				0.850
Flt Protected	0.950		0.950			
Satd. Flow (prot)	1710	1583	1745	1900	1765	1500
Flt Permitted	0.950		0.950			
Satd. Flow (perm)	1710	1583	1739	1900	1765	1459
Right Turn on Red	3	Yes	,	. , 00		Yes
Satd. Flow (RTOR)		58				172
Link Speed (mph)	25	30		35	35	1/2
Link Distance (ft)	315			1448	419	
Travel Time (s)	8.6			28.2	8.2	
, ,	0.0		2	ZØ.Z	Ø.Z	2
Confl. Peds. (#/hr)		2	2			2
Confl. Bikes (#/hr)	0.07	2	0.07	0.07	0.07	1
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96
Heavy Vehicles (%)	0%	0%	0%	0%	1%	1%
Adj. Flow (vph)	317	58	71	617	454	172
Shared Lane Traffic (%)						
Lane Group Flow (vph)	317	58	71	617	454	172
Turn Type	Perm	pt+ov	Prot	NA	NA	Perm
Protected Phases		45	5	2	6	
Permitted Phases	4					6
Detector Phase	4	4	5	2	6	6
Switch Phase	•	•	J	_	J	J
Minimum Initial (s)	4.0		7.0	4.0	4.0	4.0
Minimum Split (s)	20.0		13.0	20.0	26.0	26.0
Total Split (s)	36.0		36.0	54.0	54.0	54.0
Total Split (%)	28.6%		28.6%	42.9%	42.9%	42.9%
Maximum Green (s)	30.0		30.0	48.0	48.0	48.0
Yellow Time (s)	4.0		4.0	4.0	4.0	4.0
All-Red Time (s)	2.0		2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0		6.0	6.0	6.0	6.0
Lead/Lag			Lead		Lag	Lag
Lead-Lag Optimize?			Yes		Yes	Yes
Vehicle Extension (s)	3.0		3.0	4.0	4.0	4.0
Recall Mode	None		None	Min	Min	Min
Walk Time (s)	. 10110				5.0	5.0
Flash Dont Walk (s)					15.0	15.0
* *						
Pedestrian Calls (#/hr)					0	0

Kelso School District - Huntington MS Interim Site 3:00 pm 10/29/2022 2022 Without-Proj - Afternoon Peak Heffron Transportation Inc. - ZDG

	۶	•	•	†	ļ	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Act Effct Green (s)	21.3	33.1	9.8	41.6	29.9	29.9
Actuated g/C Ratio	0.28	0.43	0.13	0.55	0.39	0.39
v/c Ratio	0.66	0.08	0.32	0.59	0.66	0.25
Control Delay	34.7	4.4	40.7	14.2	26.4	4.3
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	34.7	4.4	40.7	14.2	26.4	4.3
LOS	С	Α	D	В	С	Α
Approach Delay	30.0			16.9	20.4	
Approach LOS	С			В	С	
Queue Length 50th (ft)	135	0	32	174	180	0
Queue Length 95th (ft)	283	21	88	325	344	40
Internal Link Dist (ft)	235			1368	339	
Turn Bay Length (ft)			200			300
Base Capacity (vph)	738	837	753	1825	1182	1034
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.43	0.07	0.09	0.34	0.38	0.17
Intersection Summary						

Area Type: Other

Cycle Length: 126

Actuated Cycle Length: 76.1

Natural Cycle: 60

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.66 Intersection Signal Delay: 21.1 Intersection Capacity Utilization 60.6%

Analysis Period (min) 15 Description: From TMC Intersection LOS: C ICU Level of Service B

Splits and Phases: 1: NW 1st Av & Fishers Ln

-						
Intersection						
Int Delay, s/veh	0.5					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	†	בטוג	VVDL	<u>₩Ы</u>	¥	ועטוג
Traffic Vol, veh/h	321	5	11	221	5	11
Future Vol, veh/h	321	5	11	221	5	11
Conflicting Peds, #/hr	0	2	2	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	_	100	_	-	0	-
Veh in Median Storage,	, # 0	-	_	0	0	_
Grade, %	0	_	_	0	0	_
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	0	0	0	0	0	0
Mvmt Flow	349	5	12	240	5	12
IVIVIIIL I IOW	347	5	12	240	5	12
	/lajor1		Major2		Vinor1	
Conflicting Flow All	0	0	356	0	618	179
Stage 1	-	-	-	-	354	-
Stage 2	-	-	-	-	264	-
Critical Hdwy	-	-	4.1	-	6.6	6.9
Critical Hdwy Stg 1	-	-	-	-	5.8	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	-	-	2.2	-	3.5	3.3
Pot Cap-1 Maneuver	-	-	1214	-	441	839
Stage 1	-	-	-	-	687	-
Stage 2	-	-	-	-	785	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1212	-	436	838
Mov Cap-2 Maneuver	-	_	-	_	436	-
Stage 1	_	_	_	_	686	_
Stage 2	_	_	_	_	776	_
2.ag0 L					. , 3	
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.4		10.7	
HCM LOS					В	
Minor Lane/Major Mvmt	t [VBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		651	-	-	1212	-
HCM Lane V/C Ratio		0.027	-	-	0.01	-
HCM Control Delay (s)		10.7	-	-	8	0
HCM Lane LOS		В	-	-	Α	Α
HCM 95th %tile Q(veh)		0.1	-	-	0	-
, ,						

Intersection												
Int Delay, s/veh	6.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			र्स	7		4			4	
Traffic Vol, veh/h	6	14	8	161	14	60	13	223	256	34	169	2
Future Vol, veh/h	6	14	8	161	14	60	13	223	256	34	169	2
Conflicting Peds, #/hr	0	0	6	6	0	0	0	0	3	3	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	·-	-	None	·-		None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	100	-	-	-	-	-	-
Veh in Median Storage,	, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	91	91	91	100	100	100	89	89	89	84	84	84
Heavy Vehicles, %	0	0	0	0	0	0	0	0	0	1	1	1
Mvmt Flow	7	15	9	161	14	60	15	251	288	40	201	2
Major/Minor N	/linor2		N	/linor1		1	Major1			Major2		
Conflicting Flow All	744	854	208	728	711	398	203	0	0	542	0	0
Stage 1	282	282	-	428	428	-	-	-	-	- 0 12	-	-
Stage 2	462	572	-	300	283	_	_	_	_	_	_	_
Critical Hdwy	7.1	6.5	6.2	7.1	6.5	6.2	4.1	-	-	4.11	_	_
Critical Hdwy Stg 1	6.1	5.5	-	6.1	5.5	-	-	_	-	-	_	_
Critical Hdwy Stg 2	6.1	5.5	-	6.1	5.5	_	_	-	-	_	_	_
Follow-up Hdwy	3.5	4	3.3	3.5	4	3.3	2.2	_	_	2.209	_	_
Pot Cap-1 Maneuver	333	298	837	341	361	656	1381	-	-	1032	_	_
Stage 1	729	681	_	609	588	-	-	_	_	-	_	_
Stage 2	584	508	-	713	681	_	_	-	_	_	_	_
Platoon blocked, %								-	-		_	_
Mov Cap-1 Maneuver	280	280	831	306	339	654	1381	-	-	1030	-	-
Mov Cap-2 Maneuver	280	280	-	306	339	-	-	-	-	-	-	-
Stage 1	717	651	-	598	577	-	-	-	-	-	-	-
Stage 2	509	499	-	654	651	-	-	-	-	-	-	-
Ü												
Approach	EB			WB			NB			SB		
HCM Control Delay, s	16.5			25.9			0.2			1.4		
HCM LOS	C			23.7 D			0.2			1.7		
110101 200	J			D								
Minor Lanc/Major Mum	+	MDI	NBT	MDD	EDI n1\	M/DI 51\	رم M/DI	SBL	SBT	SBR		
Minor Lane/Major Mvm	ι	NBL 1381	INDI	NDK		VBLn1\		1030	SDI	SDK		
Capacity (veh/h) HCM Lane V/C Ratio			-	-	345	308	654 0.092		-	-		
		0.011	-	-		0.568			-	-		
HCM Control Delay (s) HCM Lane LOS		7.6	0	-	16.5 C	31	11.1	8.6	0	-		
HCM 95th %tile Q(veh)		A 0	Α	-	0.3	D 3.3	B 0.3	A 0.1	Α	-		
TION 7501 7000 Q(VEII)		U	-	-	0.3	3.3	0.3	U. I	-	-		

Intersection						
Int Delay, s/veh	0.4					
,		EDD	NDI	NDT	CDT	CDD
Movement Long Configurations	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	\Y	F	11	₫ ↑	† }	1/
Traffic Vol, veh/h	16	5	11	641	462	16
Future Vol, veh/h	16	5	11	641	462	16
Conflicting Peds, #/hr	0	0	_ 5	_ 0	_ 0	_ 5
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	100
Veh in Median Storage	2, # 0	-	-	0	0	-
Grade, %	1	-	-	1	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	0	0	2	2	2	2
Mymt Flow	17	5	12	697	502	17
WWITH FIOW	17	5	12	097	302	17
Major/Minor N	Minor2	N	Major1	N	Major2	
Conflicting Flow All	889	265	524	0	-	0
Stage 1	516			-	_	-
Stage 2	373	_	_	_	_	_
Critical Hdwy	7	7	4.14			
		,	4.14	-	-	-
Critical Hdwy Stg 1	6	-	-	-	-	-
Critical Hdwy Stg 2	6	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	2.22	-	-	-
Pot Cap-1 Maneuver	273	734	1039	-	-	-
Stage 1	554	-	-	-	-	-
Stage 2	659	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	265	731	1034	_	_	-
Mov Cap-2 Maneuver	265	-	-	_	_	_
Stage 1	541	_	-	_	-	_
		-	-	-	-	-
Stage 2	656	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	17.4		0.2		0	
HCM LOS	17.4 C		0.2		U	
HOW LOS	C					
Minor Lane/Major Mvm	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1034		312	_	_
HCM Lane V/C Ratio		0.012		0.073	-	_
HCM Control Delay (s)		8.5	0.1	17.4		_
HCM Lane LOS			Α	17.4 C	-	-
	١	A	А		-	-
HCM 95th %tile Q(veh))	0	-	0.2	-	-

Intersection						
Int Delay, s/veh	0					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	LDL	^	†	WDIX	JDL	<u>JDR</u>
Traffic Vol, veh/h	0	631	504	16	0	5
Future Vol, veh/h	0	631	504	16	0	5
Conflicting Peds, #/hr	0	031	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	310p -	None
	30	None -		None -	-	0
Storage Length		0	-			
Veh in Median Storage			0	-	0	-
Grade, %	-	0	-1	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	686	548	17	0	5
Major/Minor	Major1	N	Major2	N	Minor2	
Conflicting Flow All	-	0		0	-	283
Stage 1	_	-		-	_	200
Stage 2	-	_		-	-	-
Critical Hdwy	-	-	-	-	-	6.94
	-	-	-	-	-	0.94
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-	-	3.32
Pot Cap-1 Maneuver	0	-	-	-	0	714
Stage 1	0	-	-	-	0	-
Stage 2	0	-	-	-	0	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	-	-	-	-	-	714
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	_	_	_	_	_	_
Stage 2	_	_	_	_	_	_
Jugo 2						
					e =	
Approach	EB		WB		SB	
HCM Control Delay, s	0		0		10.1	
HCM LOS					В	
Minor Lane/Major Mvm	nt	EBT	WRT	WBR S	SRI n1	
	it.	בטו	VVDI	אוטוו		
Capacity (veh/h)		-	-	-	714	
HCM Cantral Dalay (a)		-	-	-	0.008	
HCM Control Delay (s)		-	-	-	10.1	
HCM Lane LOS		-	-	-	В	
HCM 95th %tile Q(veh))	-	-	-	0	

	٠	*	4	†	+	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ሻ		ነ	<u> </u>	<u> </u>	7
Traffic Volume (vph)	86	109	29	144	508	385
Future Volume (vph)	86	109	29	144	508	385
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
	1900	1900	1900	1900	1900	1900
Lane Width (ft)	4%	12	11		-1%	10
Grade (%)		0	200	0%	-170	200
Storage Length (ft)	0	0	200			300
Storage Lanes	1	1	1			1
Taper Length (ft)	50		50			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor						0.98
Frt		0.850				0.850
Flt Protected	0.950		0.950			
Satd. Flow (prot)	1710	1583	1694	1845	1765	1500
Flt Permitted	0.950		0.950			
Satd. Flow (perm)	1710	1583	1694	1845	1765	1465
Right Turn on Red		Yes		. 5 . 5		Yes
Satd. Flow (RTOR)		127				455
Link Speed (mph)	25	141		35	35	UUT
Link Speed (mph) Link Distance (ft)	315			1448	419	
Travel Time (s)	8.6			28.2	8.2	
` '	δ.0	2		∠ŏ.∠	٥.2	2
Confl. Bikes (#/hr)	0.00	2	0.00	0.00	0.00	3
Peak Hour Factor	0.82	0.82	0.82	0.82	0.82	0.82
Heavy Vehicles (%)	0%	0%	3%	3%	1%	1%
Adj. Flow (vph)	105	133	35	176	620	470
Shared Lane Traffic (%)						
Lane Group Flow (vph)	105	133	35	176	620	470
Turn Type	Perm	pt+ov	Prot	NA	NA	Perm
Protected Phases		4 5	5	2	6	
Permitted Phases	4					6
Detector Phase	4	4	5	2	6	6
Switch Phase		•	J	_	J	J
Minimum Initial (s)	4.0		7.0	4.0	4.0	4.0
Minimum Split (s)	20.0		13.0	20.0	26.0	26.0
	36.0		36.0		54.0	
Total Split (s)				54.0		54.0
Total Split (%)	28.6%		28.6%	42.9%	42.9%	42.9%
Maximum Green (s)	30.0		30.0	48.0	48.0	48.0
Yellow Time (s)	4.0		4.0	4.0	4.0	4.0
All-Red Time (s)	2.0		2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0		6.0	6.0	6.0	6.0
Lead/Lag			Lead		Lag	Lag
Lead-Lag Optimize?			Yes		Yes	Yes
Vehicle Extension (s)	3.0		3.0	4.0	4.0	4.0
Recall Mode	None		None	Min	Min	Min
Walk Time (s)	1,0110		110110	741111	5.0	5.0
Flash Dont Walk (s)					15.0	15.0
Pedestrian Calls (#/hr)					0	0
	10.4	177	0.0	40.2		
Act Effct Green (s)	10.4	17.7	8.0	48.3	41.0	41.0

Kelso School District - Huntington MS Interim Site 7:00 am $10/29/2022\ 2022\ With-Proj$ - AM Peak Heffron Transportation Inc. - ZDG

Lane Group EBL EBR NBL NBT SBT SBR Actuated g/C Ratio 0.15 0.25 0.11 0.68 0.57 0.57 v/c Ratio 0.42 0.27 0.19 0.14 0.61 0.45 Control Delay 37.1 6.5 37.3 4.3 15.1 2.9 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 37.1 6.5 37.3 4.3 15.1 2.9 LOS D A D A B A Approach Delay 20.0 9.8 9.8 9.8 Approach LOS B A A A
v/c Ratio 0.42 0.27 0.19 0.14 0.61 0.45 Control Delay 37.1 6.5 37.3 4.3 15.1 2.9 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 37.1 6.5 37.3 4.3 15.1 2.9 LOS D A D A B A Approach Delay 20.0 9.8 9.8 9.8
Control Delay 37.1 6.5 37.3 4.3 15.1 2.9 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 37.1 6.5 37.3 4.3 15.1 2.9 LOS D A D A B A Approach Delay 20.0 9.8 9.8 9.8
Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 37.1 6.5 37.3 4.3 15.1 2.9 LOS D A D A B A Approach Delay 20.0 9.8 9.8 9.8
Total Delay 37.1 6.5 37.3 4.3 15.1 2.9 LOS D A D A B A Approach Delay 20.0 9.8 9.8 9.8
LOS D A D A B A Approach Delay 20.0 9.8 9.8
Approach Delay 20.0 9.8 9.8
11 2
Approach LOS B A A
Queue Length 50th (ft) 46 2 16 22 196 3
Queue Length 95th (ft) 94 32 43 42 304 31
Internal Link Dist (ft) 235 1368 339
Turn Bay Length (ft) 200 300
Base Capacity (vph) 758 772 751 1814 1252 1171
Starvation Cap Reductn 0 0 0 0 0
Spillback Cap Reductn 0 0 0 0 0
Storage Cap Reductn 0 0 0 0 0
Reduced v/c Ratio 0.14 0.17 0.05 0.10 0.50 0.40

Area Type: Other

Cycle Length: 126

Actuated Cycle Length: 71.4

Natural Cycle: 65

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.61 Intersection Signal Delay: 11.4 Intersection Capacity Utilization 43.5%

Analysis Period (min) 15 Description: From TMC Intersection LOS: B ICU Level of Service A

Splits and Phases: 1: NW 1st Av & Fishers Ln

-						
Intersection						
Int Delay, s/veh	4.9					
Š		EDD	WDI	WDT	NDI	MDD
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	† }			्रदी	¥	
Traffic Vol, veh/h	163	21	162	246	38	28
Future Vol, veh/h	163	21	162	246	38	28
Conflicting Peds, #/hr	0	10	10	0	0	0
0	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	100	-	-	0	-
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	82	82	82	82	55	55
Heavy Vehicles, %	0	0	0	0	0	0
Mvmt Flow	199	26	198	300	69	51
	.,,	20	. 70	500	0,	01
	lajor1		Major2		Minor1	
Conflicting Flow All	0	0	235	0	918	123
Stage 1	-	-	-	-	222	-
Stage 2	-	-	-	-	696	-
Critical Hdwy	-	-	4.1	-	6.6	6.9
Critical Hdwy Stg 1	_	_	_	-	5.8	_
Critical Hdwy Stg 2	_	_	_	_	5.4	_
Follow-up Hdwy	_	_	2.2	_	3.5	3.3
Pot Cap-1 Maneuver	_	_	1344	_	289	911
Stage 1			1344	_	800	711
Stage 2	-	-	-	-	498	-
	-	-	-	-	490	-
Platoon blocked, %	-	-	1004	-	227	004
Mov Cap-1 Maneuver	-	-	1334	-	236	904
Mov Cap-2 Maneuver	-	-	-	-	236	-
Stage 1	-	-	-	-	794	-
Stage 2	-	-	-	-	409	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		3.2		21	
HCM LOS	U		٥.۷		C	
HOW LOS					C	
Minor Lane/Major Mvmt	<u> </u>	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		344	-	-	1334	-
HCM Lane V/C Ratio		0.349	-	-	0.148	-
HCM Control Delay (s)		21	-	-	8.2	0
HCM Lane LOS		С	_	-	Α	Ā
HCM 95th %tile Q(veh)		1.5	_	_	0.5	-
		1.0			3.0	

Intersection														
Int Delay, s/veh	40.5													
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		
Lane Configurations		4			र्स	7		4			4			
Traffic Vol, veh/h	4	15	8	228	9	34	1	73	67	102	287	2		
Future Vol, veh/h	4	15	8	228	9	34	1	73	67	102	287	2		
Conflicting Peds, #/hr	0	0	0	0	0	0	1	0	0	0	0	1		
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free		
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None		
Storage Length	-	-	-	-	-	100	-	-	-	-	-	-		
Veh in Median Storage	:,# -	0	-	-	0	-	-	0	-	-	0	-		
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-		
Peak Hour Factor	72	72	72	75	75	75	79	79	79	83	83	83		
Heavy Vehicles, %	4	4	4	1	1	1	2	2	2	1	1	1		
Mvmt Flow	6	21	11	304	12	45	1	92	85	123	346	2		
	Minor2			Minor1			Major1		1	Major2				
Conflicting Flow All	759	773	348	746	732	135	349	0	0	177	0	0		
Stage 1	594	594	-	137	137	-	-	-	-	-	-	-		
Stage 2	165	179	-	609	595	-	-	-	-	-	-	-		
Critical Hdwy	7.14	6.54	6.24	7.11	6.51	6.21	4.12	-	-	4.11	-	-		
Critical Hdwy Stg 1	6.14	5.54	-	6.11	5.51	-	-	-	-	-	-	-		
Critical Hdwy Stg 2	6.14	5.54	-	6.11	5.51	-	-	-	-	-	-	-		
Follow-up Hdwy	3.536	4.036	3.336	3.509	4.009	3.309	2.218	-	-	2.209	-	-		
Pot Cap-1 Maneuver	321	327	691	331	349	917	1210	-	-	1405	-	-		
Stage 1	488	490	-	869	785	-	-	-	-	-	-	-		
Stage 2	832	747	-	484	494	-	-	-	-	-	-	-		
Platoon blocked, %								-	-		-	-		
Mov Cap-1 Maneuver	271	291	690	~ 282	310	917	1209	-	-	1405	-	-		
Mov Cap-2 Maneuver	271	291	-	~ 282	310	-	-	-	-	-	-	-		
Stage 1	487	436	-	868	784	-	-	-	-	-	-	-		
Stage 2	778	746	-	404	440	-	-	-	-	-	-	-		
Approach	EB			WB			NB			SB				
HCM Control Delay, s	16.6			113.2			0.1			2				
HCM LOS	С			F										
Minor Long/Maior M.	.+	MDI	NDT	NDD	CDI ∽1\	MDI ∽1\	MDI ∽≏	CDI	CDT	CDD				
Minor Lane/Major Mvm	IL	NBL	NBT	MRK	EBLn1V			SBL	SBT	SBR				
Capacity (veh/h)		1209	-	-	347	283	917	1405	-	-				
HCM Cantral Dalay (a)		0.001	-	-		1.117			-	-				
HCM Control Delay (s)		8	0	-	16.6		9.1	7.8	0	-				
HCM Lane LOS	١	A	А	-	C	F 12.1	A	A	Α	-				
HCM 95th %tile Q(veh))	0	-	-	0.4	13.1	0.2	0.3	-	-				
Notes														
~: Volume exceeds cap	oacity	\$: De	elay exc	ceeds 3	00s	+: Com	putatio	n Not D	efined	*: All	major v	olume/	in platoon	

3.1					
EBL	EBR	NBL	NBT	SBT	SBR
	LDK	INDL			אטכ
	112	0			14
					16
					16
					_ 2
•					Free
-	None	-	None	-	None
0	-	-	-	-	100
ge, # 0	-	-	0	0	-
1	-	-	1	0	-
92	49	92	92	92	53
2	2	2	2	2	2
		9			30
_		-			
				/lajor2	
	349	695	0	-	0
680	-	-	-	-	-
107	-	-	-	-	-
7.04	7.04	4.14	-	-	-
	_	_	_	_	_
	_	_	_	_	_
	3 32	2 22	_	_	_
					_
	041	071			
	-	-	-	-	-
900	-	-	-	-	-
			-	-	-
	640	895	-	-	-
	-	-	-	-	-
441	-	-	-	-	-
898	-	-	-	-	-
EB		NB		SB	
s 14.2		0.4		0	
3 14.2		0.4		U	
В					
	NBL	NBT	EBLn1	SBT	SBR
В		NBT -		SBT -	SBR -
B vmt	895		625	SBT -	SBR - -
B vmt	895 0.01	-	625 0.378	SBT - -	SBR - -
B vmt	895 0.01 9.1	- - 0	625 0.378 14.2	SBT - -	SBR - - -
B vmt	895 0.01	-	625 0.378	SBT	SBR - - -
	5 5 5 5 5 5 7 5 5 7 5 7 5 7 5 7 6 8 7 6 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7	5 113 5 113 7 0 0 Stop Stop - None 0 - ge, # 0 - 1 - 92 49 2 2 5 231 Minor2 N 787 349 680 - 107 - 7.04 7.04 6.04 - 3.52 3.32 7.04 7.04 6.04 7.04 6.04 7.04 6.04 7.04 6.04 7.04 6.04 7.04 6.04 7.04 6.04 7.04 6.04 7.04 6.04 7.04 6.04 7.04 6.04 7.04 6.04 7.04 6.04 7.0	5 113 8 5 113 8 7 0 0 2 8 Stop Stop Free - None - None - O 9e, # 0 92 49 92 2 2 2 5 231 9 Minor2 Major1	5 113 8 163 5 113 8 163 113 8 163 114 0 0 2 0 115 Stop Stop Free Free - None 0 None 0 0 1 - 1 92 49 92 92 2 2 2 2 2 5 231 9 177 Minor2 Major1 Major1	None None Stop Stop Stop Free Free

Movement EBL EBT WBT WBR SBL SBR	•						
Movement	Intersection						
Ame Configurations	Int Delay, s/veh	0.5					
Canne Configurations	Movement	EBL	EBT	WBT	WBR	SBL	SBR
Traffic Vol, veh/h Traffic Vol, veh/h Truture Vol, veh/h Trutur	Lane Configurations						
Future Vol, veh/h 0 378 462 5 0 33 Conflicting Peds, #/hr 0 <td>Traffic Vol, veh/h</td> <td>0</td> <td></td> <td></td> <td>5</td> <td>0</td> <td>33</td>	Traffic Vol, veh/h	0			5	0	33
Conflicting Peds, #/hr O O O O O O O O O	Future Vol, veh/h						
Sign Control Free RTC Free RTC None Free None Free None Stop None Stop None Stop None Stop None Stop None O O O O O O O O O O O O O O O O O D D Addition Major Minor Minor <td>Conflicting Peds, #/hr</td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td></td>	Conflicting Peds, #/hr					0	
None	· ·	Free	Free	Free	Free	Stop	Stop
Veh in Median Storage, # - 0 0 - 0 - 0 - 0 Carade, % - 0 0 - 1 - 0 0 - 0 Carade, % - 0 0 - 1 - 0 0 - 0 Carade, % - 0 0 - 1 - 0 0 - 0 Carade, % - 0 0 - 1 - 0 0 - 0 Carade, % - 2 2 2 2 2 2 2 2 2 2	RT Channelized	-	None	-	None	-	None
Carade, %	Storage Length	30	-	-	-	-	0
Peak Hour Factor 92 92 92 92 92 75 Heavy Vehicles, % 2	Veh in Median Storage,	# -	0	0	-	0	-
Alajor/Minor	Grade, %	-					
Alajor/Minor Major1 Major2 Minor2 Conflicting Flow All - 0 - 0 - 254 Stage 1 -	Peak Hour Factor				92	92	75
Major/Minor Major1 Major2 Minor2	Heavy Vehicles, %	2	2	2	2	2	2
Conflicting Flow All	Mvmt Flow	0	411	502	5	0	44
Conflicting Flow All							
Stage 1	Maior/Minor M	aior1	Λ	Maior2	N	/linor2	
Stage 1 - - - - - - - - - - - - - - - - -		- -					254
Stage 2 - - - - - - - - - - - - - - - - -		_	-	-	-	_	2J 4 -
Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Critical Hdwy Stg 2 Critical Hdwy Stg 2 Critical Hdwy Critic		_	_	-	_	_	_
Critical Hdwy Stg 1		-	-	-	-	-	6 01
Critical Hdwy Stg 2		-	-	-	-	-	U. 7 4
Follow-up Hdwy 3.32 Pot Cap-1 Maneuver 0 0 745 Stage 1 0 0 - 0 - Stage 2 0 0 - 0 - Platoon blocked, % Mov Cap-1 Maneuver 745 Mov Cap-2 Maneuver 745 Stage 1 Stage 2 Stage 2 Approach EB WB SB HCM Control Delay, s HCM LOS B Minor Lane/Major Mvmt EBT WBT WBR SBLn1 Capacity (veh/h) 745 HCM Lane V/C Ratio 0.059 HCM Control Delay (s) 10.1 HCM Lane LOS B		-	-	-	-	-	-
Pot Cap-1 Maneuver 0 0 745		-	-	-	-	-	3 3J -
Stage 1		- 0	-	-	-		
Stage 2 0 - - 0 - Platoon blocked, % - - - - - - - 745 Mov Cap-1 Maneuver - <td>•</td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td>740</td>	•		-	-	-		740
Platoon blocked, % - - - - 745 Mov Cap-1 Maneuver - - - - - 745 Mov Cap-2 Maneuver -			-	-	-		-
Mov Cap-1 Maneuver - - - 745 Mov Cap-2 Maneuver -		U	-	-	-	U	-
Mov Cap-2 Maneuver			-	-	-		715
Stage 1 - </td <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>745</td>		-	-	-	-	-	745
Stage 2 - </td <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>		-	-	-	-	-	-
Approach EB WB SB HCM Control Delay, s 0 0 10.1 HCM LOS B Minor Lane/Major Mvmt EBT WBT WBR SBLn1 Capacity (veh/h) 745 HCM Lane V/C Ratio 0.059 HCM Control Delay (s) - 10.1 HCM Lane LOS - B		-	-	-	-	-	-
AICM Control Delay, s 0 0 10.1 HCM LOS B Minor Lane/Major Mvmt EBT WBT WBR SBLn1 Capacity (veh/h) 745 HCM Lane V/C Ratio - 0.059 HCM Control Delay (s) 10.1 HCM Lane LOS - B	Stage 2	-	-	-	-	-	-
AICM Control Delay, s 0 0 10.1 HCM LOS B Minor Lane/Major Mvmt EBT WBT WBR SBLn1 Capacity (veh/h) 745 HCM Lane V/C Ratio 0.059 HCM Control Delay (s) 10.1 HCM Lane LOS - B							
Minor Lane/Major Mvmt EBT WBT WBR SBLn1 Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s) HCM Lane LOS B B Alinor Lane/Major Mvmt EBT WBT WBR SBLn1 - 745 - 0.059 - 10.1 HCM Lane LOS B	Approach			WB			
Minor Lane/Major Mvmt EBT WBT WBR SBLn1 Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s) HCM Lane LOS B B WBR SBLn1 - 745 - 0.059 - 10.1 - 10.1	HCM Control Delay, s	0		0	-	10.1	
Capacity (veh/h) 745 HCM Lane V/C Ratio 0.059 HCM Control Delay (s) 10.1 HCM Lane LOS - B	HCM LOS					В	
Capacity (veh/h) 745 HCM Lane V/C Ratio 0.059 HCM Control Delay (s) 10.1 HCM Lane LOS - B							
Capacity (veh/h) 745 HCM Lane V/C Ratio 0.059 HCM Control Delay (s) 10.1 HCM Lane LOS - B	Minor Lane/Maior Mymt		EBT	WBT	WBR S	SBLn1	
HCM Lane V/C Ratio 0.059 HCM Control Delay (s) 10.1 HCM Lane LOS B							
HCM Control Delay (s) 10.1 HCM Lane LOS B			-	-			
HCM Lane LOS B			_	-	_		
			_	-	_		
10W1 70W1 70W10 Q(VOII) 0.2			_	-	_		
	110W1 70W1 70W10 Q(VCH)					0.2	

-												
Intersection												
Intersection Delay, s/veh	18.6											
Intersection LOS	С											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			र्स	7		4			4	
Traffic Vol, veh/h	4	15	8	228	9	34	1	73	67	102	287	2
Future Vol, veh/h	4	15	8	228	9	34	1	73	67	102	287	2
Peak Hour Factor	0.72	0.72	0.72	0.75	0.75	0.75	0.79	0.79	0.79	0.83	0.83	0.83
Heavy Vehicles, %	4	4	4	1	1	1	2	2	2	1	1	1
Mvmt Flow	6	21	11	304	12	45	1	92	85	123	346	2
Number of Lanes	0	1	0	0	1	1	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	2			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			2		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			2			1		
HCM Control Delay	10.2			18.3			11.2			22.3		
HCM LOS	В			С			В			С		
Lane		NBLn1	EBLn1	WBLn1	WBLn2	SBLn1						
Vol Left, %		1%	15%	96%	0%	26%						
Vol Thru, %		52%	56%	4%	0%	73%						
Vol Right, %		48%	30%	0%	100%	1%						
Sign Control		Stop	Stop	Stop	Stop	Stop						
Traffic Vol by Lane		141	27	237	34	391						
LT Vol		1	4	228	0	102						
Through Vol		73	15	9	0	287						
RT Vol		67	8	0	34	2						
Lane Flow Rate		178	38	316	45	471						
Geometry Grp		2	5	7	7	2						
Degree of Util (X)		0.286	0.07	0.605	0.072	0.73						
Departure Headway (Hd)		5.77	6.716	6.895	5.693	5.579						
Convergence, Y/N		Yes	Yes	Yes	Yes	Yes						
Cap		618	537	521	627	645						
Service Time		3.851	4.716	4.657	3.454	3.642						
HCM Lane V/C Ratio		0.288	0.071	0.607	0.072	0.73						
HCM Control Delay		11.2	10.2	19.7	8.9	22.3						
HCM Lane LOS		В	В	С	Α	С						
HCM 95th-tile Q		1.2	0.2	4	0.2	6.3						

Intersection						
Int Delay, s/veh	7.7					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
		LDK	INDL			SDK
Lane Configurations	24	110	0	↑	†	Λ
Traffic Vol, veh/h	34	119	0	30	33	0
Future Vol, veh/h	34	119	0	30	33	0
Conflicting Peds, #/hr	10	10	20	0	0	20
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	45	45	45	45	45	45
Heavy Vehicles, %	0	0	0	0	0	0
Mvmt Flow	76	264	0	67	73	0
Major/Minor M	/linor2	N	Jaior1	N	/laior?	
			Major1		/lajor2	Λ
Conflicting Flow All	150	83	-	0	-	0
Stage 1	73	-	-	-	-	-
Stage 2	77	-	-	-	-	-
Critical Hdwy	6.4	6.2	-	-	-	-
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	-	-	-	-
Pot Cap-1 Maneuver	847	982	0	-	-	0
Stage 1	955	-	0	-	-	0
Stage 2	951	_	0	_	_	0
Platoon blocked, %	,		Ū	_	_	· ·
Mov Cap-1 Maneuver	847	976	_	_		_
Mov Cap-1 Maneuver	847	710	-	-	-	-
		-	-	-	-	-
Stage 1	955	-	-	-	-	-
Stage 2	951	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	10.9		0		0	
HCM LOS	В					
Minor Lanc/Major Mum	ŧ	NDT	- DI n1	SBT		
Minor Lane/Major Mvm	l	NDIL	EBLn1			
Capacity (veh/h)		-	944	-		
HCM Lane V/C Ratio		-	0.36	-		
HCM Control Delay (s)		-	10.9	-		
HCM Lane LOS		-	В	-		
HCM 95th %tile Q(veh)		-	1.7	-		

Intersection						
Int Delay, s/veh	0.3					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	WDL	WDIX		NDIX	JDL	<u> </u>
Traffic Vol, veh/h	5	5	136	0	0	523
Future Vol, veh/h	5	5	136	0		523
	20	0	0	20	0 20	0
Conflicting Peds, #/hr					Free	
Sign Control RT Channelized	Stop	Stop	Free	Free		Free
	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage,		-	0	-	-	0
Grade, %	0	- 45	0	- 70	70	0
Peak Hour Factor	45	45	79	79	79	79
Heavy Vehicles, %	0	0	2	2	1	1
Mvmt Flow	11	11	172	0	0	662
Major/Minor N	/linor1	N	Major1	Λ	/lajor2	
Conflicting Flow All	854	172	0		-	_
Stage 1	172	-	-	_	_	_
Stage 2	682	_	_	_	_	
Critical Hdwy	6.4	6.2				
Critical Hdwy Stg 1	5.4	0.2	-	-	-	-
Critical Hdwy Stg 2	5.4	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	-	-	-	-
	332	ა.ა 877	-	-	-	-
Pot Cap-1 Maneuver		8//	-	0	0	-
Stage 1	863	-	-	0	0	-
Stage 2	506	-	-	0	0	-
Platoon blocked, %	201	077	-			-
Mov Cap-1 Maneuver	326	877	-	-	-	-
Mov Cap-2 Maneuver	326	-	-	-	-	-
Stage 1	863	-	-	-	-	-
Stage 2	496	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	13		0		0	
HCM LOS	В		J		J	
TIOW LOO	U					
Minor Lane/Major Mvm	t	NBTV	VBLn1	SBT		
Capacity (veh/h)		-	475	-		
HCM Lane V/C Ratio		-	0.047	-		
HCM Control Delay (s)		-	13	-		
HCM Lane LOS		-	В	-		
HCM 95th %tile Q(veh)		-	0.1	-		
, ,						

Intersection						
Int Delay, s/veh	1					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	WBL	WDIX		NDIX	JUL	- उठा स्
Traffic Vol, veh/h	'T' 14	2	‡ 141	9	1	식 521
Future Vol, veh/h	14	2	141	9	4 4	521 521
	20	0		20	20	
Conflicting Peds, #/hr			0 Eroo			0 Eroo
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	45	45	79	79	79	79
Heavy Vehicles, %	100	2	2	0	1	1
Mvmt Flow	31	4	178	11	5	659
Major/Minor	Minor1	N	Major1	ı	Major2	
						^
Conflicting Flow All	893	204	0	0	209	0
Stage 1	204	-	-	-	-	-
Stage 2	689	-	-	-	-	-
Critical Hdwy	7.4	6.22	-	-	4.11	-
Critical Hdwy Stg 1	6.4	-	-	-	-	-
Critical Hdwy Stg 2	6.4	-	-	-	-	-
Follow-up Hdwy	4.4	3.318	-	-	2.209	-
Pot Cap-1 Maneuver	214	837	-	-	1368	-
Stage 1	643	-	-	-	-	-
Stage 2	356	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	205	821	_	-	1342	-
Mov Cap-2 Maneuver	205		_	_		_
Stage 1	631	_	_	_	_	_
Stage 2	347	-	-	-	-	-
Stayt 2	J4 <i>1</i>	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	23.9		0		0.1	
HCM LOS	С					
Minor Lanc/Major Mar	ot.	NDT	NDDA	M/DI n1	CDI	CDT
Minor Lane/Major Mvn	III	NBT	INDKA	VBLn1	SBL	SBT
Capacity (veh/h)		-	-	226	1342	-
HCM Lane V/C Ratio		-	-	0.157		-
HCM Control Delay (s))	-	-	23.9	7.7	0
HCM Lane LOS		-	-	С	Α	Α
HCM 95th %tile Q(veh	1)	-	-	0.5	0	-

1.1111 131711 0.111	5G. G E					
	۶	•	4	†	ţ	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ሻ	7	ሻ	1	†	7
Traffic Volume (vph)	384	56	68	580	447	203
Future Volume (vph)	384	56	68	580	447	203
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	12	11	12	10	10
Grade (%)	4%	_		0%	-1%	
Storage Length (ft)	0	0	200			300
Storage Lanes	1	1	1			1
Taper Length (ft)	50		50			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor			1.00			0.97
Frt		0.850				0.850
Flt Protected	0.950	0.000	0.950			5.000
	1710	1583	1745	1900	1765	1500
Satd. Flow (prot)		1383		1900	1/00	1000
Flt Permitted	0.950	4500	0.950	4000	47:-	a .==
Satd. Flow (perm)	1710	1583	1739	1900	1765	1459
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)		58				211
Link Speed (mph)	25			35	35	
Link Distance (ft)	315			1448	419	
Travel Time (s)	8.6			28.2	8.2	
Confl. Peds. (#/hr)	0.0		2	20.2	0.2	2
` '		า	Z			1
Confl. Bikes (#/hr)	0.07	2	0.07	0.07	0.07	•
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96
Heavy Vehicles (%)	0%	0%	0%	0%	1%	1%
Adj. Flow (vph)	400	58	71	604	466	211
Shared Lane Traffic (%)						
Lane Group Flow (vph)	400	58	71	604	466	211
Turn Type	Perm	pt+ov	Prot	NA	NA	Perm
Protected Phases	. 51111	4 5	5	2	6	. 0/111
Permitted Phases	1	7 3	3	۷	U	6
	4	1	г	2	,	6
Detector Phase	4	4	5	2	6	6
Switch Phase						
Minimum Initial (s)	4.0		7.0	4.0	4.0	4.0
Minimum Split (s)	20.0		13.0	20.0	26.0	26.0
Total Split (s)	36.0		36.0	54.0	54.0	54.0
Total Split (%)	28.6%		28.6%	42.9%	42.9%	42.9%
Maximum Green (s)	30.0		30.0	48.0	48.0	48.0
Yellow Time (s)	4.0		4.0	4.0	4.0	4.0
` ,						
All-Red Time (s)	2.0		2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0		6.0	6.0	6.0	6.0
Lead/Lag			Lead		Lag	Lag
Lead-Lag Optimize?			Yes		Yes	Yes
Vehicle Extension (s)	3.0		3.0	4.0	4.0	4.0
Recall Mode	None		None	Min	Min	Min
Walk Time (s)	140110		1,0110	141111	5.0	5.0
* *						
Flash Dont Walk (s)					15.0	15.0
Pedestrian Calls (#/hr)					0	0

Kelso School District - Huntington MS Interim Site $3:00 \text{ pm} \ 10/29/2022 \ 2022 \ \text{Without-Proj}$ - Afternoon Peak Heffron Transportation Inc. - ZDG

	۶	•	1	†	ļ	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Act Effct Green (s)	29.2	41.1	9.6	43.2	31.3	31.3
Actuated g/C Ratio	0.34	0.48	0.11	0.51	0.37	0.37
v/c Ratio	0.68	0.07	0.36	0.63	0.72	0.31
Control Delay	34.8	4.4	45.0	17.4	31.2	4.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	34.8	4.4	45.0	17.4	31.2	4.2
LOS	С	Α	D	В	С	Α
Approach Delay	31.0			20.3	22.8	
Approach LOS	С			С	С	
Queue Length 50th (ft)	186	0	37	221	225	0
Queue Length 95th (ft)	#417	22	90	313	354	43
Internal Link Dist (ft)	235			1368	339	
Turn Bay Length (ft)			200			300
Base Capacity (vph)	633	814	646	1762	1045	950
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.63	0.07	0.11	0.34	0.45	0.22
Intercaction Cummary						

Intersection Summary

Area Type: Other

Cycle Length: 126

Actuated Cycle Length: 85

Natural Cycle: 60

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.72 Intersection Signal Delay: 23.9 Intersection Capacity Utilization 65.6%

Intersection LOS: C ICU Level of Service C

Analysis Period (min) 15 Description: From TMC

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 1: NW 1st Av & Fishers Ln

Intersection						
Int Delay, s/veh	2.1					
•	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	†	LDIX	WDL	<u>स्</u>	Y	NUIX
Traffic Vol, veh/h	334	10	49	221	16	78
Future Vol, veh/h	334	10	49	221	16	78 78
	334	15	49	0	0	78 0
Conflicting Peds, #/hr						
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	100	-	-	0	-
Veh in Median Storage,		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	0	0	0	0	0	0
Mvmt Flow	363	11	53	240	17	85
Major/Minor	o!o-1		Anic = 2		Mine-1	
	ajor1		Major2		Minor1	000
Conflicting Flow All	0	0	389	0	730	202
Stage 1	-	-	-	-	384	-
Stage 2	-	-	-	-	346	-
Critical Hdwy	-	-	4.1	-	6.6	6.9
Critical Hdwy Stg 1	-	-	-	-	5.8	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	-	-	2.2	-	3.5	3.3
Pot Cap-1 Maneuver	_	_	1181	-	377	811
Stage 1	_	_	_	_	664	_
Stage 2	_	_	_	_	721	_
Platoon blocked, %	_			_	721	
Mov Cap-1 Maneuver			1168		354	802
	-	-	1100	-	354 354	002
Mov Cap-2 Maneuver	-	-	-	-		-
Stage 1	-	-	-	-	657	-
Stage 2	-	-	-	-	684	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		1.5		11.5	
HCM LOS	•				В	
					J	
Minor Lang/Major Must	,	IDI n1	EDT	EDD	///DI	WDT
Minor Lane/Major Mvmt	l	VBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		660	-	-	1168	-
HCM Lane V/C Ratio		0.155	-	-	0.0.0	-
HCM Control Delay (s)		11.5	-	-	8.2	0
HCM Lane LOS		В	-	-	Α	Α
HCM 95th %tile Q(veh)		0.5	-	-	0.1	-

Intersection												
Int Delay, s/veh	7.2											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			र्स	7		4			4	
Traffic Vol, veh/h	6	14	8	165	14	67	13	224	270	38	170	2
Future Vol, veh/h	6	14	8	165	14	67	13	224	270	38	170	2
Conflicting Peds, #/hr	0	0	6	6	0	0	0	0	3	3	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized		-	None	· -		None	-	-	None	_	-	None
Storage Length	-	-	-	-	-	100	-	-	-	_	-	-
Veh in Median Storage,	, # -	0	-	-	0	-	-	0	-	_	0	-
Grade, %	-	0	-	-	0	-	-	0	-	_	0	-
Peak Hour Factor	91	91	91	100	100	100	89	89	89	84	84	84
Heavy Vehicles, %	0	0	0	0	0	0	0	0	0	1	1	1
Mvmt Flow	7	15	9	165	14	67	15	252	303	45	202	2
	·	-				-					- -	-
Major/Minor N	/linor2		N	Minor1		ĺ	Major1		ĺ	Major2		
Conflicting Flow All	767	881	209	748	731	407	204	0	0	558	0	0
Stage 1	293	293	207	437	437	-10 <i>1</i>	<u> -</u>	-	-	-	-	-
Stage 2	474	588	_	311	294	_	_	_	_	_	_	_
Critical Hdwy	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.11		
Critical Hdwy Stg 1	6.1	5.5	- 0.2	6.1	5.5	0.2	7.1	_	_	7.11	_	_
Critical Hdwy Stg 2	6.1	5.5	_	6.1	5.5	_						
Follow-up Hdwy	3.5	4	3.3	3.5	4	3.3	2.2			2.209		
Pot Cap-1 Maneuver	322	288	836	331	351	648	1380			1018		
Stage 1	719	674	- 030	602	583	U 1 U	1300	-	-	1010	-	-
Stage 2	575	499	-	704	673	-	-	-	-	_	-	-
Platoon blocked, %	313	777	-	704	0/3	-	-	-	-	-	-	-
Mov Cap-1 Maneuver	265	268	830	295	327	646	1380	_	_	1016	-	-
Mov Cap-1 Maneuver	265	268	- 030	295	327	U 1 U	1300	-	-	1010	-	-
Stage 1	707	640	-	591	572	-	-	-	-	-	-	-
Stage 2	494	490	-	641	639	-	-	-	-	-	-	-
Staye 2	474	470	-	U4 I	039	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	17			27.7			0.2			1.6		
HCM LOS	C			27.7 D			0.2			1.0		
HOW LOO	O			D								
Minor Lane/Major Mvmt	t	NBL	NBT	NBR I	EBLn1\	WBLn1\	VBLn2	SBL	SBT	SBR		
Capacity (veh/h)		1380	_	_	331	297	646	1016	_	_		
HCM Lane V/C Ratio		0.011	_	_		0.603	0.104		_	_		
HCM Control Delay (s)		7.6	0	_	17	33.9	11.2	8.7	0	_		
HCM Lane LOS		Α.	A	_	C	55.7 D	В	Α	A	_		
HCM 95th %tile Q(veh)		0	-	_	0.3	3.6	0.3	0.1	-	_		
110W 70W 70W Q(VOII)		J			0.0	5.0	0.0	0.1				

Intersection						
Int Delay, s/veh	0.6					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
		LDK	INDL			אמכ
Lane Configurations	₩ 16	0	21	4↑	↑ }	27
Traffic Vol, veh/h	16	9	21	629	462	27
Future Vol, veh/h	16	9	21	629	462	27
Conflicting Peds, #/hr	0	0	5	0	_ 0	_ 5
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	100
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	1	-	-	1	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	0	0	2	2	2	2
Mvmt Flow	17	10	23	684	502	29
IVIVIIIL I IUW	1 /	10	23	004	302	۷7
Major/Minor N	/linor2	<u> </u>	Major1	<u> </u>	Najor2	
Conflicting Flow All	910	271	536	0	-	0
Stage 1	522	_	_	_	_	_
Stage 2	388	_	_	_	_	_
Critical Hdwy	7	7	4.14	_	_	_
Critical Hdwy Stg 1	6	,	7.17			
		-	-	-	-	-
Critical Hdwy Stg 2	6	2.2	2 22	-	-	-
Follow-up Hdwy	3.5	3.3	2.22	-	-	-
Pot Cap-1 Maneuver	264	727	1028	-	-	-
Stage 1	549	-	-	-	-	-
Stage 2	647	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	252	724	1023	-	-	-
Mov Cap-2 Maneuver	252	_	-	_	-	-
Stage 1	526	_	_	_	_	_
Stage 2	644	_	_	_	_	_
Jiage Z	UT †		_			
Approach	EB		NB		SB	
HCM Control Delay, s	16.9		0.4		0	
HCM LOS	С					
		:				0
Minor Lane/Major Mvmt	t	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1023	-	329	-	-
HCM Lane V/C Ratio		0.022	-	0.083	-	-
HCM Control Delay (s)		8.6	0.1	16.9	-	-
HCM Lane LOS		А	Α	С	_	_
HCM 95th %tile Q(veh)		0.1	-	0.3	_	_
		5.1		5.0		

Intersection						
Int Delay, s/veh	0.1					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	LDL			WUK	JDL	JDK 7
Traffic Vol, veh/h	0	^^^^	↑Љ 504	25	0	10
Future Vol, veh/h	0	631	504	25 25	0	10
Conflicting Peds, #/hr	0	031	0	0	0	0
Sign Control	Free		Free	Free	Stop	
RT Channelized	riee -	Free None	riee -	None	310p -	Stop None
	30				-	0
Storage Length		-	-	-		U
Veh in Median Storage		0	0	-	0	-
Grade, %	-	0	-1	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	686	548	27	0	11
Major/Minor	Major1	ľ	Major2	٨	/linor2	
Conflicting Flow All		0	-	0	-	288
Stage 1	_	-	_	-	_	
Stage 2	_	_	_	_	_	_
Critical Hdwy	_	_	_	_	_	6.94
Critical Hdwy Stg 1	_	_	_	_	_	0.71
Critical Hdwy Stg 2	_	_	_	_	_	_
Follow-up Hdwy	_	_	_	_	_	3.32
Pot Cap-1 Maneuver	0				0	709
Stage 1	0		_	_	0	707
Stage 2	0	-		_	0	_
Platoon blocked, %	U	-	-	-	U	-
		-	-	-		709
Mov Cap 2 Maneuver	-	-	-	-	-	109
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	EB		WB		SB	
HCM Control Delay, s	0		0		10.2	
HCM LOS					В	
Minor Lanc/Major Mar	at.	EDT	WDT	WDD	CDI n1	
Minor Lane/Major Mvn	Il	EBT	MRI	WBR S		
Capacity (veh/h)		-	-	-	709	
HCM Lane V/C Ratio		-	-	-	0.015	
HCM Control Delay (s))	-	-	-	10.2	
HCM Lane LOS		-	-	-	В	
HCM 95th %tile Q(veh)	-	-	-	0	

Intersection												
Intersection Delay, s/veh	17.5											
Intersection LOS	С											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			र्स	7		4			4	
Traffic Vol, veh/h	6	14	8	165	14	67	13	224	270	38	170	2
Future Vol, veh/h	6	14	8	165	14	67	13	224	270	38	170	2
Peak Hour Factor	0.91	0.91	0.91	1.00	1.00	1.00	0.89	0.89	0.89	0.84	0.84	0.84
Heavy Vehicles, %	0	0	0	0	0	0	0	0	0	1	1	1
Mvmt Flow	7	15	9	165	14	67	15	252	303	45	202	2
Number of Lanes	0	1	0	0	1	1	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	2			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			2		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			2			1		
HCM Control Delay	10			12.5			22.4			12.3		
HCM LOS	А			В			С			В		
Lane		NBLn1	EBLn1	WBLn1	WBLn2	SBLn1						
Vol Left, %		3%	21%	92%	0%	18%						
Vol Thru, %		44%	50%	8%	0%	81%						
Vol Right, %		53%	29%	0%	100%	1%						
Sign Control		Stop	Stop	Stop	Stop	Stop						
Traffic Vol by Lane		507	28	179	67	210						
LT Vol		13	6	165	0	38						
Through Vol		224	14	14	0	170						
RT Vol		270	8	0	67	2						
Lane Flow Rate		570	31	179	67	250						
Geometry Grp		2	5	7	7	2						
Degree of Util (X)		0.771	0.056	0.352	0.11	0.391						
Departure Headway (Hd)		4.873	6.564	7.079	5.895	5.636						
Convergence, Y/N		Yes	Yes	Yes	Yes	Yes						
Cap		741	542	507	606	638						
Service Time		2.914	4.644	4.832	3.647	3.689						
HCM Lane V/C Ratio		0.769	0.057	0.353	0.111	0.392						
HCM Control Delay		22.4	10	13.7	9.4	12.3						
HCM Lane LOS		C	A	В	A	В						
HCM 95th-tile Q		7.5	0.2	1.6	0.4	1.9						

Intersection						
Int Delay, s/veh	5.9					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥	בטוג	.,,,,,	<u>₩</u>	<u> </u>	ODIN
Traffic Vol, veh/h	62	9	0	62	16	0
Future Vol, veh/h	62	9	0	62	16	0
Conflicting Peds, #/hr	15	0	20	0	0	20
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	510p -	None	-	None	-	None
Storage Length	0	NOTIC -	_	-	_	-
Veh in Median Storage		_	_	0	0	_
Grade, %	0	-	-	0	0	-
Peak Hour Factor	40	40	40	60	60	60
Heavy Vehicles, %	0	0	0	0	00	0
		23		103	27	
Mvmt Flow	155	23	0	103	21	0
Major/Minor	Minor2	N	Major1	N	√ajor2	
Conflicting Flow All	145	27	-	0	-	0
Stage 1	27	-	-	-	-	-
Stage 2	118	-	-	-	-	-
Critical Hdwy	6.4	6.2	-	-	-	-
Critical Hdwy Stg 1	5.4	_	_	_	_	-
Critical Hdwy Stg 2	5.4	_	_	_	_	_
Follow-up Hdwy	3.5	3.3	_	_	_	_
Pot Cap-1 Maneuver	852	1054	0	_	_	0
Stage 1	1001	-	0	_	_	0
Stage 2	912	_	0	_	_	0
Platoon blocked, %	, 12		0	_	_	J
Mov Cap-1 Maneuver	852	1054	_	_	_	_
Mov Cap-1 Maneuver	852	-	-	_	_	_
Stage 1	1001	-	-	-	-	-
	912	-	-	-	-	-
Stage 2	912	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	10.2		0		0	
HCM LOS	В					
Minor Lane/Major Mvn	nt	NBT F	EBLn1	SBT		
Capacity (veh/h)		- 11011	873			
HCM Lane V/C Ratio			0.203	_		
HCM Control Delay (s)	١	-	10.2	-		
HCM Lane LOS	,	-	10.2 B	-		
HCM 95th %tile Q(veh)	-	0.8	-		
110W 70W 70W Q(VCI	,		0.0			

•						
Intersection						
Int Delay, s/veh	0.5					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		↑			↑
Traffic Vol, veh/h	5	8	499	0	0	343
Future Vol, veh/h	5	8	499	0	0	343
Conflicting Peds, #/hr	15	0	0	20	20	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	·-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	40	40	89	89	90	90
Heavy Vehicles, %	0	0	0	0	0	0
Mvmt Flow	13	20	561	0	0	381
Major/Minor I	Minor1	N	Major1	N	/lajor2	
Conflicting Flow All	957	561	0		najorz	
Stage 1	561	501	Ū	_	-	_
Stage 2	396	-	-	_	-	_
Critical Hdwy	6.4	6.2	-	_	-	_
Critical Hdwy Stg 1	5.4	0.2	-	-	-	-
Critical Hdwy Stg 2	5.4	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	-	-	-	-
Pot Cap-1 Maneuver	288	531	-	0	0	-
Stage 1	575	551	-	0	0	-
Stage 2	684	-	-	0	0	-
Platoon blocked, %	004	-	-	U	U	-
Mov Cap-1 Maneuver	284	531	-			-
Mov Cap-1 Maneuver	284	551	-	-	-	-
	575	-	-	-	-	-
Stage 1		-	-	-	-	-
Stage 2	674	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	14.8		0		0	
HCM LOS	В					
Minor Lane/Major Mvm	nt	NBTV	VBLn1	SBT		
Capacity (veh/h)	-	-	398	-		
HCM Lane V/C Ratio		_	0.082	_		
HCM Control Delay (s)		_	14.8	_		
HCM Lane LOS		_	В	_		
HCM 95th %tile Q(veh))	_	0.3	_		
	•					

Intersection						
Int Delay, s/veh	1.7					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	WBL	MON		NDK	SDL	
Traffic Vol, veh/h	'T' 19	7	Љ 497	0	0	₄ 347
		7		0	0	
Future Vol, veh/h	19	7	497	0	0	347
Conflicting Peds, #/hr	20	O Cton	0	20 Eras	20	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	40	40	89	89	90	90
Heavy Vehicles, %	74	0	0	0	0	0
Mvmt Flow	48	18	558	0	0	386
Major/Minor	Minor1		laior1	N.	Aniar2	
	Minor1		Major1		Major2	
Conflicting Flow All	984	578	0	0	578	0
Stage 1	578	-	-	-	-	-
Stage 2	406	-	-	-	-	-
Critical Hdwy	7.14	6.2	-	-	4.1	-
Critical Hdwy Stg 1	6.14	-	-	-	-	-
Critical Hdwy Stg 2	6.14	-	-	-	-	-
Follow-up Hdwy	4.166	3.3	-	-	2.2	-
Pot Cap-1 Maneuver	206	519	-	-	1006	-
Stage 1	442	_	_	_	_	_
Stage 2	542	_	_	_	_	_
Platoon blocked, %	012		_	_		_
Mov Cap-1 Maneuver	198	509			987	
Mov Cap-1 Maneuver	198	307	_	_	707	_
		-	-	-	-	-
Stage 1	434	-	-	-	-	-
Stage 2	532	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	25.8		0		0	
HCM LOS	D		J		J	
TIOW LOO	D					
					a = :	
Minor Lane/Major Mvn	nt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		-	-	237	987	-
HCM Lane V/C Ratio		-	-	0.274	-	-
HCM Control Delay (s))	-	-	25.8	0	-
HCM Lane LOS		-	-	D	Α	-
HCM 95th %tile Q(veh	1)	_	_	1.1	0	_
2(1011	,			•••	•	